

CroMo D. Ćavar Outline Introductior Model Evaluation Comments

CroMo - Morphological Analysis for Croatian

Damir Ćavar¹, Ivo-Pavao Jazbec² and Tomislav Stojanov²

Linguistics Department, University of Zadar¹ Institute of Croatian Language and Linguistics²

FSMNLP 2008

CroMo D. Ćavar

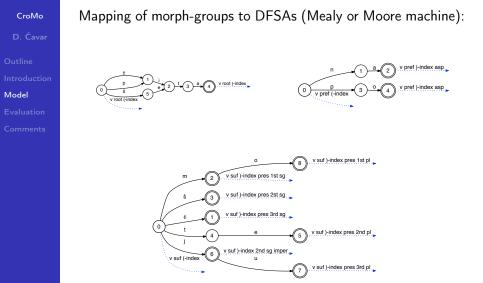
Outline Introduction Model Evaluation Comments

2 Model

Scenario

- CroMo D. Ćavar Outline Introduction Model Evaluation
- Synchronic and diachronic study of language change and acquisition models
 - Language data from a long period of time, and three major dialects in Croatia implying:
 - Variation wrt. e.g. string-based morphology or feature bundles
 - Ongoing discovery wrt. string combinatorics and features
- Research questions require quantitative and qualitative information:
 - of phonological, morphological, syntactic and semantic tokens and feature bundles, and their correlation and variation at various stages over time

Morphological segmentation and annotation and lemmatization, and ...

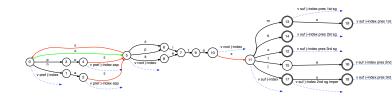

CroMo D. Ćava

Outline

- Introduction
- Model
- Evaluation
- Comments

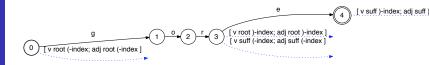
- Segmenting words:
 - isponapijali su se "they got drunk a little bit to satisfaction"
 - is po napija li
- Annotating segments:
 - aspect prefix aspect prefix from stem-lemma *napiti* plural participle
- Extending the annotation:
 - to a certain saturation a little bit "get drunk" from root-lemma *piti* past event

Croivio
D. Ćavar
Outline
Model
Comments


- Mapping ambiguity on emission: emission tuple 1 to n
- Label DFSAs with variable names
- Use rules referring to variable names for modeling of morphotactic regularities:

verbAspectPrefs* . verbAtiRoots . verbInflSuf

CroMo D. Ćavar Outline Introduction Model Evaluation


Generating potentially cyclic DFSAs:

CroMo D. Ćavar Outline Introduction Model Evaluation Comments

Ambiguity mapped on emission tuple:

CroMo D. Ćavar Outline Introduction Model Evaluation

Lemmatization as a rule:

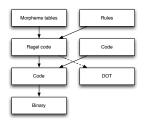
- Rightmost root is the semantic head
- Root-lemma: generate canonical word-form from the right-most root
 - $neprijatelja \rightarrow ne + prijatelj + a \rightarrow NEG + N-root + ACC$ "not friend" = "enemy" $\Rightarrow \neg$ friend not compositional! but useful for semantic field analysis! root-lemma: $neprijatelja \rightarrow prijatelj$
- Stem/base-lemma: generate canonical word-form from the stem without inflectional suffixes base-lemma: neprijatelja → neprijatelj

CroMo D. Ćavar Outline Introduction Model Evaluation

Lemmatization (Hack):

- emission of byte-offset for suffix-elimination
- pointer to suffix string
- Clean solution:

0:(0, ()) **→** 2 r:<u>(r, ())</u> → 3 g:(g, (FV, ...)) e:(a, (FV, ...)) 0

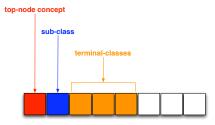


Implementation

CroMo D. Ćava

Introductic Model

- C++ wrapper for final application
- Ragel code (automaton definition) generated from morpheme DBs and rules, with associated feature bundles (extended version of Ragel, (≥ V. 6.1) for handling ambiguity via introduction of multiple emission symbols = emission tuples)
- Ragel generated C code (jump-code)



Implementation

CroMo

- D. Cava
- Outline
- Model
- Evaluatior
- Comments

- Emission (feature bundles): as one bit-vector
- Features mapped from the General Ontology for Linguistic Description (upper ontology)
 - possibility: reasoning over linguistic concepts and features
- Optimization: mapping of concepts and their relations on a compressed bit-vector, maintaining inheritance and implicatures

Evaluation

CroMo D. Ćavar Outline Introduction Model Evaluation

- Hardware: dual core 2.4 GHz
- Lexical base: 120,000 morphemes (and allomorphs)
- Speed: approx. 50,000 tokens per second with average morpheme count of 2.5 per token
- Size: binary footprint approx. 5 MB
- Compilation (tables \rightarrow Ragel + C; Ragel \rightarrow C + DOT; gcc \rightarrow bin): approx. 5 minutes, min. 4 GB RAM for monolithic architecture

Comments

CroMo D. Ćavar Dutline

- Introductio
- Model
- Evaluation
- Comments

- Interoperability issues addressed:
 - GOLD
 - platform independent code
 - code-page independence
- Extensible (turnaround time of some minutes)
- Minimally invasive and minimalistic
- Open-source