Introduction to Symbolic and Statistical NLP in Scheme

Damir Ćavar
dcavar@unizd.hr

ESSLLI 2006, Malaga
July/August 2006

(c) 2006 by Damir Ćavar

Frequency Profiles

- Token-length on frequency

Information Theory

- Some background information on the bigram statistics from countbigram*.ss and average-mi.ss/average-re.ss.

Information Theory

- Surprise effect:
- Coin tossing and observing the results
- What is our prior believe or expectation about an outcome?
- How surprised are we to see a certain outcome?
- Data compression:
- Knowing about the distributional properties of some data
- What is the best compression we can get by mapping it to bit-representations?
- Is there a formal way to calculate the optimal representation for data transmission?

Information Theory

- Entropy:
- Entropy as uncertainty * Tossing a coin $=$ not knowing what the outcome will be. * Probability distribution:
- Fair coin
- Biased coin, unlimited probability distributions

Information Theory

- Entropy:
- Entropy as uncertainty * Is there a way to calculate the uncertainty and formulate a function on the basis of a probability distribution?
* Let us design such a function:
- $H[X]$ is the measure for X, with X a probability distribution
- H takes X, with $X=\{P(1), P(2), \ldots P(N)\}$ as an argument - and returns a real number, the value of uncertainty

Information Theory

- Designing a function for Entropy:

1. Maximum uncertainty in uniform distribution: every possible outcome is equally likely
\rightarrow This is the maximum H can return
2. H is a continuous function over the probabilities
\rightarrow changing the probabilities slightly leads to slight changes of H

Information Theory

- Grouping Probabilities:
$-X=\{P(1)=.5, P(2)=.2, P(3)=(.3)\}:$
- is equivalent to:

$$
\begin{aligned}
& * X=\{P(1)=.5, P(Y)=.5\} \\
& * Y=\{P(2)=.4, P(3)=.6\}
\end{aligned}
$$

3. Uncertainty H cannot depend on the grouping of events for a random variable.

Information Theory

- Entropy: Formal reformulation of (1-3)
- $H(p)$ is a real valued function of $P(1), P(2), \ldots P(N)$, with N the number of values for the random variable or length of domain, then

1. $H(P(1), P(2), \ldots P(N))$ reaches a maximum if the distribution is uniform: $P(i)=1 / N, N=l e n(i), \forall i$.
2. $H(P(1), P(2), \ldots P(N))$ is a continuous function of all $P(i)$'s.

Information Theory

- Entropy: Formal reformulation of (1-3)

3. Independence of subsets of probability groups: for N probabilities grouped into k subsets, w_{k} :

$$
w_{1}=\sum_{i=1}^{n_{1}} p_{i} ; w_{2}=\sum_{i=n_{1}+1}^{n_{2}} p_{i} ; \ldots
$$

Information Theory

- Entropy: Formal reformulation of (1-3)

3. Independence of subsets of probability groups: assumption

$$
H[p]=H[w]+\sum_{j=1}^{k} w_{j} H\left[\left\{p_{i} / w_{j}\right\}_{j}\right]
$$

- $\left\{p_{i} / w_{j}\right\}$ is: sum extends over p_{i} 's that make up a particular w_{j}

Information Theory

- Entropy: Summary
- Given the three requirements it follows that:

$$
H[X]=k \sum_{x \in X} \operatorname{Pr}(x) \log \operatorname{Pr}(x)
$$

- with k and arbitrary constant $[8,40,44]$. For $k=-1$ and $\log _{2}$ the units are bit.

Information Theory

- Average Shannon Entropy: measured in bits

$$
\begin{gathered}
H[X]=-1 \sum_{x \in X} \operatorname{Pr}(x) \lg \operatorname{Pr}(x) \\
H[X]=\sum_{x \in X} \operatorname{Pr}(x) \lg \frac{1}{\operatorname{Pr}(x)}
\end{gathered}
$$

Information Theory

- Average Shannon Entropy of one outcome: measured in bits

$$
h[x]=\operatorname{Pr}(x) \lg \frac{1}{\operatorname{Pr}(x)}
$$

Joint Entropy

- For a pair of random variables: $X, Y \sim p(x, y)$

$$
H(X, Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \lg p(x, y)
$$

- $X=\{A=.4, B=.6\}$
- $Y=\{C=.2, D=.8\}$

Joint Entropy

- $X \wedge Y=\{A C=.4 \times .2, A D=.4 \times .8, B C=.6 \times .2, B D=.6 \times .8\}$
- $X \wedge Y=\{A C=.08, A D=.32, B C=.12, B D=.48\}$
- $Z=\{A C=.08, A D=.32, B C=.12, B D=.48\}$

Mutual Information

- Reduction of uncertainty of one random variable due to knowing about another.
- Amount of information one random variable contains about another.
- Symmetric, Non-negative
- $M I=0$, if two random variables are independent
- MI is high, if two random variables are dependent, depending on their entropy.

Mutual Information

- MI over random variables!
\rightarrow Pointwise Mutual Information
- Pointwise MI over selected values of random variables!

$$
I(X ; Y)=P(X Y) \lg \frac{P(X Y)}{P(X) P(Y)}
$$

- How many bits can we spare by storing two elements, rather than each single element alone?

Relative Entropy - KL Divergence

- Average number of bits that are wasted by encoding events from random variable X with a code based on random variable Y. How close are two pmf's?

$$
\begin{gathered}
D(y \| x)=p(y) l g \frac{p(y)}{p(y \mid x)} \\
D(y \| x)=p(y) l g \frac{p(y)}{\frac{p(x y)}{p(x)}}=p(y) l g \frac{p(y) p(x)}{p(x y)}
\end{gathered}
$$

- How many bits more would we use by storing $<x y>$, rather than each single element alone?

