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dcavar@unizd.hr

ESSLLI 2006, Malaga

July/August 2006

© 2006 by Damir Ćavar

http://eng.unizd.hr/~dcavar/
mailto:dcavar@unizd.hr


Frequency Profiles

• Token-length on frequency
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Information Theory

• Some background information on the bigram statistics from
countbigram*.ss and average-mi.ss/average-re.ss.
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Information Theory

• Surprise effect:

– Coin tossing and observing the results
– What is our prior believe or expectation about an outcome?
– How surprised are we to see a certain outcome?

• Data compression:

– Knowing about the distributional properties of some data
– What is the best compression we can get by mapping it to

bit-representations?
– Is there a formal way to calculate the optimal representation

for data transmission?

© 2006 by Damir Ćavar 3



Information Theory

• Entropy:

– Entropy as uncertainty
∗ Tossing a coin = not knowing what the outcome will be.
∗ Probability distribution:
· Fair coin
· Biased coin, unlimited probability distributions
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Information Theory

• Entropy:

– Entropy as uncertainty
∗ Is there a way to calculate the uncertainty and formulate a

function on the basis of a probability distribution?
∗ Let us design such a function:
· H[X] is the measure for X, with X a probability distribution
· H takes X, with X = {P (1), P (2), . . . P (N)} as an argument
· and returns a real number, the value of uncertainty
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Information Theory

• Designing a function for Entropy:

1. Maximum uncertainty in uniform distribution: every possible
outcome is equally likely

→ This is the maximum H can return
2. H is a continuous function over the probabilities
→ changing the probabilities slightly leads to slight changes of H
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Information Theory

• Grouping Probabilities:

– X = {P (1) = .5, P (2) = .2, P (3) = (.3)}:
– is equivalent to:
∗ X = {P (1) = .5, P (Y ) = .5}
∗ Y = {P (2) = .4, P (3) = .6}

3. Uncertainty H cannot depend on the grouping of events for a
random variable.
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Information Theory

• Entropy: Formal reformulation of (1–3)

– H(p) is a real valued function of P (1), P (2), . . . P (N), with N the
number of values for the random variable or length of domain,
then

1. H(P (1), P (2), . . . P (N)) reaches a maximum if the distribution
is uniform: P (i) = 1/N, N = len(i), ∀ i.

2. H(P (1), P (2), . . . P (N)) is a continuous function of all P (i)’s.
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Information Theory

• Entropy: Formal reformulation of (1–3)

3. Independence of subsets of probability groups: for N probab-
ilities grouped into k subsets, wk:

w1 =

n1∑
i=1

pi; w2 =

n2∑
i=n1+1

pi; . . .
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Information Theory

• Entropy: Formal reformulation of (1–3)

3. Independence of subsets of probability groups: assumption

H[p] = H[w] +
k∑

j=1

wjH[{pi/wj}j]

– {pi/wj} is: sum extends over pi’s that make up a particular wj
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Information Theory

• Entropy: Summary

– Given the three requirements it follows that:

H[X] = k
∑
x∈X

Pr(x)logPr(x)

– with k and arbitrary constant [8, 40, 44]. For k = −1 and log2

the units are bit.

© 2006 by Damir Ćavar 11



Information Theory

• Average Shannon Entropy: measured in bits

H[X] = −1
∑
x∈X

Pr(x)lgPr(x)

H[X] =
∑
x∈X

Pr(x)lg
1

Pr(x)
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Information Theory

• Average Shannon Entropy of one outcome: measured in bits

h[x] = Pr(x)lg
1

Pr(x)
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Joint Entropy

• For a pair of random variables: X, Y ∼ p(x, y)

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)lgp(x, y)

• X = {A = .4, B = .6}

• Y = {C = .2, D = .8}

© 2006 by Damir Ćavar 14



Joint Entropy

• X ∧ Y = {AC = .4× .2, AD = .4× .8, BC = .6× .2, BD = .6× .8}

• X ∧ Y = {AC = .08, AD = .32, BC = .12, BD = .48}

• Z = {AC = .08, AD = .32, BC = .12, BD = .48}
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Mutual Information

• Reduction of uncertainty of one random variable due to knowing
about another.

• Amount of information one random variable contains about an-
other.

• Symmetric, Non-negative

• MI = 0, if two random variables are independent

• MI is high, if two random variables are dependent, depending on
their entropy.
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Mutual Information

• MI over random variables!

→ Pointwise Mutual Information

– Pointwise MI over selected values of random variables!

I(X; Y ) = P (XY )lg
P (XY )

P (X)P (Y )

• How many bits can we spare by storing two elements, rather
than each single element alone?
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Relative Entropy – KL Divergence

• Average number of bits that are wasted by encoding events from
random variable X with a code based on random variable Y. How
close are two pmf’s?

D(y||x) = p(y)lg
p(y)

p(y|x)

D(y||x) = p(y)lg
p(y)
p(xy)

p(x)

= p(y)lg
p(y)p(x)

p(xy)

• How many bits more would we use by storing < xy >, rather
than each single element alone?
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