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Vector Space Modeling

• Contextual vectors (distributional model):
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Optimization Clustering

• Given a clustering criterion

– How to find a partition into n groups that optimizes the cri-
terion?

• Find all possible partitions and calculate their value of the given
criterion.

• Choose the partition with the optimal value.
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Optimization Clustering

• K-means generates

– k number of disjoint clusters (non-hierarchical)
– globular clusters (spherical, elliptical, convex)

• properties:

– numerical
– unsupervised
– iterative
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Optimization Clustering

• K-means

– k clusters
– At least one element per cluster
– No overlapping clusters
– Non-hierarchical
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Optimization Clustering

• K-means

– Every member of a cluster is closer to its cluster than to any
other cluster

– Procedure
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Optimization Clustering

• K-means

– Initial partitioning of data set into k clusters
– For each data point: calculate distance to each cluster
– If one data point is closer to another cluster, relocate it
– Repeat until no further relocations possible
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Optimization Clustering

• K-means advantages

– For large number of variables it is faster than hierarchical al-
gorithms (for small k’s)

– Tighter clusters than hierarchical clustering, if cluster are glob-
ular
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Optimization Clustering

• K-means disadvantages

– Initial set of k clusters can affect the result
– Does not work well with non-globular clusters
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Optimization Clustering

• K-means example

Individual Variable 1 Variable 2
1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 4.5 5.0
7 3.5 4.5
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Optimization Clustering

• Initial 2 clusters on the basis of the most distant individuals:

Individual Mean Vector
Group 1 1 (1.0, 1.0)
Group 2 4 (5.0, 7.0)
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Optimization Clustering

• Initial clustering of all remaining individuals:

– For every other individual:
∗ Calculate Euclidean distance to the centroid of every cluster
∗ Assign individual to cluster
∗ Recalculate centroid for every cluster

© 2006 by Damir Ćavar 11



Optimization Clustering

• Mean vector or centroid (with coordinates x1 to xn) with equal
weight coordinates:

x̄ =

∑n
i=1 xi

n
(1)
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Optimization Clustering

• Mean vector or centroid example for x = {(3, 5), (7, 9)}, i. e. n =
|x| = 2:

x̄ =

∑2
i=1 xi

2
=

(3, 5) + (7, 9)

2
=

(3 + 7, 5 + 9)

2
= (

10

2
,
14

2
) = (5, 7)
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Optimization Clustering

• Initial clustering of all remaining individuals:

Group 1 Group 2
Individual Mean Vector Individual Mean Vector

Step 1 1 (1.0, 1.0) 4 (5.0, 7.0)
Step 2 1, 2 (1.3, 1.5) 4 (5.0, 7.0)
Step 3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)
Step 4 1, 2, 3 (1.8, 2.3) 4, 5 (4.3, 6.0)
Step 5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)
Step 6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)
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Optimization Clustering

• Initial partitions and clustering criterion:

Individual Mean Vector Sum of SQR error
Group 1 1, 2, 3 (1.8, 2.3) 6.84
Group 2 4, 5, 6, 7 (4.1, 5.4) 5.38

total 12.22
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Optimization Clustering

• Error = for every point distance to centroid

– Criterion: the smaller the sum of square errors, the better the
cluster

• Two dimensional Euclidean distance:

√
(x1 − x2)2 + (y1 − y2)2 (2)
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Optimization Clustering

• Error = for every point distance to centroid

• N-dimensional Euclidean distance, with pi and qi the coordinates
for p and q in dimension i:

√√√√ N∑
i=1

(p1 − q1)2 (3)
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Optimization Clustering

• Optimization Iteration:

– Compare each individual’s distance to its own mean with dis-
tance to the opposite group mean.

– If distance to the mean in opposite group is smaller, relocate
the individual.

– Calculate the sum of square errors, if smaller than before, this
is an improvement.
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Optimization Clustering

• Distance to means:

Individual distance to mean 1 distance to mean 2
1 1.5 5.4
2 0.4 4.3
3 2.1 1.8
4 5.7 1.8
5 3.2 0.7
6 3.8 0.8
7 2.8 1.1
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Optimization Clustering

• Subsequent partitions and new clustering criterion:

Individual Mean Vector Sum of SQR error
Group 1 1, 2 (1.3, 1.5) 0.63
Group 2 3, 4, 5, 6, 7 (3.9, 5.1) 7.9

total 8.53

• Decrease of clustering criterion (from 12.22 to 8.53).
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Optimization Clustering

• Remember:

– k-means or k-nearest neighbors is a fast and efficient al-
gorithm.

– You have to know how many clusters you are looking for.
– Specific cluster shapes will not be discovered.
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