Grammar

Introduction to Symbolic and Statistical NLP in Scheme

Damir Ćavar dcavar@unizd.hr

ESSLLI 2006, Malaga

July/August 2006

- Replacement rules:
- Set of symbols
- Set of terminals
- Production rules
- $\ X \to ab$
- $X \rightarrow aXb$

0 2006 by Damir Ćavar

© 2006 by Damir Ćavar

Grammar

• Context-free grammar:

- The left-hand side of a rule can only consist of one symbol.
- The right-hand side may consist of any number of symbols and terminals.
- Replacement of a left-hand side symbol is possible any time, independent of the context.

Grammar

• $G = (\{VP, NP, V, N\}, \{see, John\}, S, P)$

 $\begin{array}{l} - S = VP \\ - P = \\ VP \rightarrow V \ NP \\ NP \rightarrow N \\ N \rightarrow John \\ V \rightarrow see \end{array}$

Parsing and Phrase Structure Grammar

- Top-down parsing
 - Replace goal symbol with symbols and symbols with terminals until the terminals match.
- Bottom-up parsing
 - Replace terminals with symbols and symbols with symbols until the goal symbol is reached.

- Parsing strategies
- Top-down parsing
- Bottom-up parsing
- Processing strategies
 - Breath first
- Depth first

© 2006 by Damir Ćavar

 \odot 2006 by Damir Ćavar

Parsing Strategy

- Problems observed
- Reanalysis of already analyzed constituents
- Search through all grammar rules
- Solution
- Memorize analyzed constituents
- Choose appropriate rules

Parsing Strategy

- Solution
 - Chart Parsing
 - * Chart as memory
 - \ast Selection of relevant rules from grammar

4

6

5

Parsing

- Chart:
 - Storage for complete and incomplete constituents
 - Edges
 - * Dotted rule
 - \ast Index

- Chart:
 - Storage for complete and incomplete constituents
 - Edges
 - $\ast\,$ Dotted rule: VP \rightarrow V $\bullet\,$ NP
 - * Index:
 - \cdot Left and right position of the edge span
 - \cdot Position of the dot in the RHS

© 2006 by Damir Ćavar

© 2006 by Damir Ćavar

Chart Parsing

- Edges:
 - Dotted rule: VP \rightarrow V \bullet NP How much of the input at which position matches which part of the RHS of the rule?
 - Example:
 - * Input: John loves Mary
 - * Edge: (1, 2, 1, V \rightarrow loves •)

Chart Parsing

- Edges:
 - Inactive edge: (1, 2, 1, V \rightarrow *loves* •) * Complete constituent
 - Active edge: (1, 2, 1, VP \rightarrow V \bullet NP)
 - * Incomplete constituent

8

Chart Parsing

- Adding edges to chart:
 - Initialization
 - Rule invocation: Matching edges with rules
 - Fundamental rule: Matching active and inactive edges on the chart

- Initialization
- Bottom-up strategy:
- For every token add an inactive edge to chart:
 - * edge(0, 1, 1, N \rightarrow John •)
 - * edge(1, 2, 1, V \rightarrow kissed •)
 - * edge(2, 3, 1, N \rightarrow Mary •)

© 2006	by	Damir	Ćavar	

12

© 2006 by Damir Ćavar

Chart Parsing

- Rule Invocation
- Bottom-up strategy:
- For every inactive edge on chart:
 - \ast Find rules that have its LHS on their left periphery in RHS
 - * Create new edges and add to chart.

Chart Parsing

- Rule Invocation
- Example:
 - * Inactive edge: edge(0, 1, 1, N \rightarrow John $\bullet)$
 - * Rule: NP \rightarrow N
 - \ast New edge: edge(0, 0, 0, NP \rightarrow \bullet N)

Chart Parsing

• Fundamental Rule

- Move inactive edge from agenda to chart
- For inactive edge find edge that expects it
 - * edge(0, 1, 1, NP \rightarrow N •)
 - * edge(0, 0, 0, S \rightarrow NP VP)
- Add resulting edge to agenda:
 - * edge(0, 1, 1, S \rightarrow NP VP)

• Bottom-up:

 Initialize agenda
Repeat until edges in agenda Process first edge on agenda If edge inactive: move inactive edge to chart Function RuleInvocation Function FundamentalRule

• Result:

If chart contains over-spanning edges, these represent possible parses of the input.

© 2006 by Damir Ćavar

 \odot 2006 by Damir Ćavar

Chart Parsing

- Step by step
- Initialize chart with the next word of the utterance, i. e. create edge with the lexical rule
- Find rules in the grammar that consume the symbol of the inactive edges on the chart, i. e. extend the chart with edges that have LHS-symbols of inactive edges at the left periphery of their RHS

Chart Parsing

- Step by step
 - Create new edges by combining an active edge with an inactive edge:
 - * the end of the one is the beginning of the other
 - * the expectation symbol of the active edge corresponds with the LHS of the inactive edge

16

Chart Parsing

- Motivation
- Problems with backtracking (our brute-force) parsers:
 - * Repetitive parsing of same token(list)s
 - * Repetitive parsing of paths that turned out to be unsuccessful
 - * Unknown words and partial structures lead to a failure

- Motivation
- Chart parser (e.g. Earley parser):
 - * Avoid parsing of same token(list)s by memorization in chart
 - * Memorize parses for partial structures
 - \cdot If a spanning analysis is impossible, the chart contains the partial analyses

© 2006	by Damir	Ćavar	

20

© 2006 by Damir Ćavar

Chart Parsing

- Motivation
- Chart parser (e.g. Earley parser):
 - * Compact representation for ambiguous structures (multiple parses)

Chart Parsing

• Chart

- Edges
 - * Directed graph: start point, end point, analysis
 - * Input: John kissed Mary
 - * Final chart:
 - (0, 1, N, [John]) (1, 2, V, [kissed •]) (2, 3, N, [Mary •]) (0, 3, S, [NP VP •]) (0, 1, NP, [N •]) (2, 3, NP, [N •]) (1, 3, VP, [V NP •])

Chart Parsing

- Strategies
 - Bottom-up
 - Top-down
- Active strategies (Agenda)
 - Depth-first
 - Breath-first

- Bottom-up strategy
- Initialization (scan, tagging)
 - * Add edges with lexical rules for each token (incrementally)
- Rule invocation (prediction)
- Fundamental rule (completion)

© 2006 by Damir Ćavar

24

© 2006 by Damir Ćavar

Chart Parsing

- Bottom-up strategy
 - Rule Invocation:
 - For every inactive edge on chart:
 - \ast Find rules that have its LHS on their left periphery in RHS.
 - $\ast\,$ Create new edges and add to chart.

Chart Parsing

- Bottom-up rule invocation example:
- Inactive edge:
 - * edge(0, 1, N \rightarrow John •)
- Rule:
 - * NP \rightarrow N
- New edge:
 - * edge(0, 0, NP \rightarrow N)

Chart Parsing

- Fundamental Rule
- For every active edge find expected inactive edge:
 - * edge(0, 1, N \rightarrow John •)
 - * edge(0, 0, NP \rightarrow N)
- Merge edges and add resulting edge to chart: * edge(0, 1, NP \rightarrow N $\bullet)$

- Top-down strategy
- Initialization
 - * Add edges with rules with goal symbol on LHS (incrementally)
- Rule invocation (prediction)
- Fundamental rule (completion)

© 2006 by Damir Ćavar

28

© 2006 by Damir Ćavar

Chart Parsing

- Top-down strategy
- Rule Invocation:

For every active edge on chart:

- * Find rules that have its left peripheral symbol from the expected RHS on their LHS. The left peripheral symbol from the expected RHS is the first symbol following the DOT.
- * Create new edges and add to chart.

Chart Parsing

- Top-down rule invocation example:
 - Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
- Rule:
 - $* \text{ NP} \rightarrow \text{N}$
- New edge:
 - * edge(0, 0, NP \rightarrow N)

Chart Parsing

- Top-down rule invocation depth-first:
- Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
- Rules: NP \rightarrow N; N \rightarrow John
- New edges:
 - * edge(0, 0, NP \rightarrow N)
 - * edge(0, 0, N \rightarrow John)

- Top-down after rule invocation and fundamental rule:
- New edges:
 - * edge(0, 1, S \rightarrow NP VP)
 - * edge(0, 1, NP \rightarrow N •)
 - * edge(0, 1, N ightarrow John •)

© 2006 by Damir Ćavar

32

© 2006 by Damir Ćavar

Chart Parsing

- Top-down rule invocation breadth-first:
- Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
- Rules: NP \rightarrow N; VP \rightarrow V NP
- New edges:
 - * edge(0, 0, NP \rightarrow N)
 - * edge(0, 0, VP \rightarrow V NP)

Chart Parsing

- Fundamental Rule
- For every active edge find expected inactive edge: * edge(0, 0, NP \rightarrow \bullet N)
 - * edge(0, 1, N \rightarrow John •)
- Merge edges and add resulting edge to chart: * edge(0, 1, NP \rightarrow N \bullet)

- Fundamental Rule
- For every active edge find expected inactive edge:
 - * edge(0, 0, S \rightarrow NP VP)
 - * edge(0, 1, NP \rightarrow N •)
- Merge edges and add resulting edge to chart: * edge(0, 1, S \rightarrow NP • VP)

- Rule Invocation
- Dependent of parsing strategy.

Chart Parsing

37

- Fundamental Rule
 - Independent of parsing strategy.

© 2006 by Damir Ćavar

36

© 2006 by Damir Ćavar

Chart Parsing

- Differences between top-down and bottom-up parsing:
 - TD: Disambiguates by position.
 - * Calls from Alaska are expensive.
 - BU: Lexically driven.
 - TD: Has to handle recursion.