Introduction to Symbolic and Statistical NLP in Scheme

Damir Ćavar dcavar@unizd.hr

ESSLLI 2006, Malaga

July/August 2006

Grammar

• Replacement rules:

- Set of symbols
- Set of terminals
- Production rules
- $-X \rightarrow ab$
- $-X \rightarrow aXb$

Grammar

Context-free grammar:

- The left-hand side of a rule can only consist of one symbol.
- The right-hand side may consist of any number of symbols and terminals.
- Replacement of a left-hand side symbol is possible any time, independent of the context.

Grammar

```
• G = (\{VP, NP, V, N\}, \{see, John\}, S, P)

- S = VP

- P = VP \rightarrow V NP

NP \rightarrow N

N \rightarrow John

V \rightarrow see
```

Parsing and Phrase Structure Grammar

- Top-down parsing
 - Replace goal symbol with symbols and symbols with terminals until the terminals match.
- Bottom-up parsing
 - Replace terminals with symbols and symbols with symbols until the goal symbol is reached.

Parsing

- Parsing strategies
 - Top-down parsing
 - Bottom-up parsing
- Processing strategies
 - Breath first
 - Depth first

Parsing Strategy

- Problems observed
 - Reanalysis of already analyzed constituents
 - Search through all grammar rules
- Solution
 - Memorize analyzed constituents
 - Choose appropriate rules

Parsing Strategy

- Solution
 - Chart Parsing
 - * Chart as memory
 - * Selection of relevant rules from grammar

• Chart:

- Storage for complete and incomplete constituents
- Edges
 - * Dotted rule
 - * Index

• Chart:

- Storage for complete and incomplete constituents
- Edges
 - * Dotted rule: VP → V NP
 - * Index:
 - · Left and right position of the edge span
 - · Position of the dot in the RHS

• Edges:

- Dotted rule: VP → V NP
 How much of the input at which position matches which part of the RHS of the rule?
- Example:
 - * Input: John loves Mary
 - * Edge: (1, 2, 1, V → *loves* •)

• Edges:

- Inactive edge: $(1, 2, 1, V \rightarrow loves \bullet)$
 - * Complete constituent
- Active edge: $(1, 2, 1, VP \rightarrow V \bullet NP)$
 - * Incomplete constituent

- Adding edges to chart:
 - Initialization
 - Rule invocation: Matching edges with rules
 - Fundamental rule: Matching active and inactive edges on the chart

© 2006 by Damir Ćavar

Initialization

- Bottom-up strategy:
- For every token add an inactive edge to chart:
 - * edge(0, 1, 1, N \rightarrow *John* \bullet)
 - * edge(1, 2, 1, $V \rightarrow \textit{kissed} \bullet$)
 - * edge(2, 3, 1, $N \rightarrow Mary \bullet$)

• Rule Invocation

- Bottom-up strategy:
- For every inactive edge on chart:
 - * Find rules that have its LHS on their left periphery in RHS
 - * Create new edges and add to chart.

• Rule Invocation

- Example:
 - * Inactive edge: edge(0, 1, 1, N \rightarrow *John* \bullet)
 - * Rule: $NP \rightarrow N$
 - * New edge: edge(0, 0, 0, NP \rightarrow N)

Fundamental Rule

- Move inactive edge from agenda to chart
- For inactive edge find edge that expects it
 - * edge(0, 1, 1, NP \rightarrow N \bullet)
 - * edge(0, 0, 0, S \rightarrow NP VP)
- Add resulting edge to agenda:
 - * edge(0, 1, 1, S \rightarrow NP \bullet VP)

• Bottom-up:

```
1: Initialize agenda
2: Repeat until edges in agenda
Process first edge on agenda
If edge inactive:
    move inactive edge to chart
    Function RuleInvocation
Function FundamentalRule
```

• Result:

If chart contains over-spanning edges, these represent possible parses of the input.

Step by step

- Initialize chart with the next word of the utterance, i. e. create edge with the lexical rule
- Find rules in the grammar that consume the symbol of the inactive edges on the chart, i. e. extend the chart with edges that have LHS-symbols of inactive edges at the left periphery of their RHS

- Step by step
 - Create new edges by combining an active edge with an inactive edge:
 - * the end of the one is the beginning of the other
 - * the expectation symbol of the active edge corresponds with the LHS of the inactive edge

Motivation

- Problems with backtracking (our brute-force) parsers:
 - * Repetitive parsing of same token(list)s
 - * Repetitive parsing of paths that turned out to be unsuccessful
 - * Unknown words and partial structures lead to a failure

Motivation

- Chart parser (e. g. Earley parser):
 - * Avoid parsing of same token(list)s by memorization in chart
 - * Memorize parses for partial structures
 - · If a spanning analysis is impossible, the chart contains the partial analyses

Motivation

- Chart parser (e.g. Earley parser):
 - * Compact representation for ambiguous structures (multiple parses)

Chart

```
Edges
```

- * Directed graph: start point, end point, analysis
- * Input: John kissed Mary
- * Final chart:

```
(0, 1, N, [ John • ]) (0, 1, NP, [ N • ])
(1, 2, V, [ kissed • ]) (2, 3, NP, [ N • ])
(2, 3, N, [ Mary • ]) (1, 3, VP, [ V NP • ])
(0, 3, S, [ NP VP • ])
```

- Strategies
 - Bottom-up
 - Top-down
- Active strategies (Agenda)
 - Depth-first
 - Breath-first

- Bottom-up strategy
 - Initialization (scan, tagging)
 - * Add edges with lexical rules for each token (incrementally)
 - Rule invocation (prediction)
 - Fundamental rule (completion)

- Bottom-up strategy
 - Rule Invocation:
 - For every inactive edge on chart:
 - * Find rules that have its LHS on their left periphery in RHS.
 - * Create new edges and add to chart.

- Bottom-up rule invocation example:
 - Inactive edge:
 - * edge(0, 1, N \rightarrow *John* •)
 - Rule:
 - $* NP \rightarrow N$
 - New edge:
 - * edge(0, 0, NP \rightarrow N)

• Fundamental Rule

- For every active edge find expected inactive edge:
 - * edge(0, 1, N \rightarrow *John* •)
 - * edge(0, 0, NP \rightarrow N)
- Merge edges and add resulting edge to chart:
 - * edge(0, 1, NP \rightarrow N \bullet)

- Top-down strategy
 - Initialization
 - * Add edges with rules with goal symbol on LHS (incrementally)
 - Rule invocation (prediction)
 - Fundamental rule (completion)

- Top-down strategy
 - Rule Invocation:

For every active edge on chart:

- * Find rules that have its left peripheral symbol from the expected RHS on their LHS. The left peripheral symbol from the expected RHS is the first symbol following the DOT.
- * Create new edges and add to chart.

- Top-down rule invocation example:
 - Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
 - Rule:
 - $* NP \rightarrow N$
 - New edge:
 - * edge(0, 0, NP \rightarrow N)

- Top-down rule invocation depth-first:
 - Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
 - Rules: $NP \rightarrow N$; $N \rightarrow John$
 - New edges:
 - * edge(0, 0, NP \rightarrow N)
 - * edge(0, 0, N \rightarrow *John*)

- Top-down after rule invocation and fundamental rule:
 - New edges:
 - * edge(0, 1, S \rightarrow NP \bullet VP)
 - * edge(0, 1, NP \rightarrow N \bullet)
 - * edge(0, 1, N \rightarrow *John* •)

- Top-down rule invocation breadth-first:
 - Active edge:
 - * edge(0, 0, S \rightarrow NP VP)
 - Rules: $NP \rightarrow N$; $VP \rightarrow V NP$
 - New edges:
 - * edge(0, 0, NP \rightarrow N)
 - * edge(0, 0, VP \rightarrow \bullet V NP)

• Fundamental Rule

- For every active edge find expected inactive edge:
 - * edge(0, 0, NP \rightarrow N)
 - * edge(0, 1, N \rightarrow John •)
- Merge edges and add resulting edge to chart:
 - * edge(0, 1, NP \rightarrow N \bullet)

Fundamental Rule

- For every active edge find expected inactive edge:
 - * edge(0, 0, S \rightarrow NP VP)
 - * edge(0, 1, NP \rightarrow N \bullet)
- Merge edges and add resulting edge to chart:
 - * edge(0, 1, S \rightarrow NP \bullet VP)

- Rule Invocation
 - Dependent of parsing strategy.
- Fundamental Rule
 - Independent of parsing strategy.

- Differences between top-down and bottom-up parsing:
 - TD: Disambiguates by position.
 - * Calls from Alaska are expensive.
 - BU: Lexically driven.
 - TD: Has to handle recursion.