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Information Theory

 Mutual Information

P(XY)
P(X)P(Y)

I(X;Y)= P(XY)log,

— How many bits can we spare by storing <xy>
together, rather than each separate?

— How much do we expect y given x?
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Information Theory

* Relative Entropy

p(y
D(y||z) = p(y)lg )

p(y|x)

— Distance between two distributions:
* Independent: P(y)
« Conditional: P(y|x)

— How many bits more would we need to represent
<xy> when we store them together, or when we store
them as separate units?

© 2004 by Damir Cavar, Indiana University



Cue-based Learning

* Rationalist view:
— Finite set of parameters P = {p1, p2, ..., pn}

— Each p is a variable for a value from a finite
set of values.

— Specific values for the respective parameter
explain language variability as well as
language acquisition.
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Cue-based Learning

Parameter values are variable from the outset.

Most/some parameters are associated with
specific lexical properties.

A set of lexical items has to be learned (i.e.
mental lexicon).

Cues in the input have to be identified to set
parameters.

General idea: E-language properties are
mapped to |-language properties.

© 2004 by Damir Cavar, Indiana University



Cue-based Learning

» Paradox:
— Cues are innate (Lightfoot, 1999)

— Cues are identified by a specific innate e-
language acquisition device, e.qg.
Superparser (Fodor & Teller, 2000)
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Cue-based Learning

» Conceptual problems:
— Everything is innate: e- and i-language
— High-level orientation:
« Syntax or semantics

* Myths:
— Chaotic input!
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Cue-based Learning

* Central research questions:

— Can elementary language units and their
properties be identified and associated with |-
language parameters?

— What is learnable and what can be learned
given what kind of knowledge?
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Cue-based Learning

 Favorable outcome:

— Cues can be identified without additional and
language specific machinery.

— Cues are used to set specific parameters.

— Snowball effect or chain reaction:

* Induced parameter values and cues are used to
derive further (secondary) cues, which set more
parameters, and so on.
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Cue-based Learning

lterative & Incremental Cue-based
Learning

— Initial Bootstrapping Phase: An initial set of
cues K identifies a specific parameter value
P1 given some input.

— Subsequent Bootstrapping Phases:
Together with the set of cues K and the
knowledge of parameter value P1 a new
set of cues K' is derived, and so on.
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Cue-based Learning

* |terative & Incremental Cue-based
Learning
— Initial Bootstrapping Phase: An initial set of

cues K identifies a specific parameter value
P1 given some input.

INPUT > U5 L.l P,

Po

Kll
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Cue ldentification

 How can we identify the initial set of cues,
l.e. the kernel cues (k-cues)?

« Use observable properties of language
iInput:
— Intrinsic and Extrinsic properties of
elementary language units.
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Cue ldentification

* Intrinsic properties of elementary
language units:

— Frequency

— Length
« Number of X
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Cue ldentification

* Hypothesis 1:
— Frequency is a cue for lexical information.
— Length is related to frequency.

* Testing:

— Frequency (and length) based clustering of
words.
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Cue ldentification

« \Weaknesses:
— Intrinsic features alone are insufficient.

— Clustering on intrinsic and extrinsic features
IS more promising.

 Cue identification on the basis of intrinsic
and extrinsic features without clustering...
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Cue ldentification

 Distributional cues:

— Collocations inform us about the type of a
lexical element:
* the...: followed by N, i.e. a syntactic type
« of...: followed by Art, i.e. a syntactic type

« John speaks...: followed by a referent/name to/of
a language, i.e. a concept

 my name is.... followed by a proper name, i.e.
syntactic type and concept
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Cue ldentification

* Hypothesis 2:

— Function words (as well as vowels,
derivational and inflectional morphemes
etc.) = highly frequent units are the
structural landmarks.

* Testing:
— Distributional properties of function words

and substantives (and the relation between
them).
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Cue ldentification

« Elghamry (2004), Cavar & Elghamry
(2004):
— Language input is highly structured!

— Distributional regularities in the input
provide efficient bootstraps into the
grammar of the input language.

— There is a set of elements in the input
(cues) that are learnable and that make
language acquisition possible.
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Cue ldentification

* Language Learnability can be reduced to
Cue Learnability.

« Categories and frames are cue-learnable.
« Parameter setting is cue-feasible.
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Cues as Features in VS

* Mapping of lexical properties on a vector
space:
— rows: single words (types or tokens)

— columns: numerical (real number)
representation of single cues
* inherent properties: length, frequency, ...

« distributional properties: collocation with
frequency, position in clause
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Cues as Features in VS

« Similarity measure for rows
— single feature based
— multiple feature based
— over whole vector space

* Clustering of lexical items

— Cluster represent types, i.e. can be replaced with a
symbol, i.e. single words can be tagged or replaced
with a symbol

— Distributional regularities can be extracted from
symbol collocations: rule formation
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Cues as Features in VS

* Dimension problem:

— Distributional properties

 high number of columns = complex similarity
measures

* identification of relevant distributional cues
— but how?
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Cue ldentification

* The phases of Cue-Based Learning
— Identification of cues
— Cue-based induction (e.g. categorization)

— Generation of new cues:

« Using cue-based categories in for frame
identification (subcategorization)
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Cue ldentification

* Cue Extraction Criterion (K)

— The set of Cues, K, is the smallest subset of
the elements {k,, ..., k,} in a corpus R such
that all elements in R occurs at least once
with at least one member In K.
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Cue ldentification

* Approximate Cue Extraction Procedure

— Build decreasing frequency profile for all
the words in corpus R.

— The set of cues K= {w,, ..., w_} is the list of
most frequent words, such that the number
of words it co-occurs with corresponds to
the number of words in the corpus.
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Cue ldentification

k-cue identification:

— From a decreasing frequency profile of types
include all the types that co-occur with all the other
word types in the corpus.

— Stop, if no improvement in coverage: stagnation of
k-cue - type ratio
— Coverage:

the: 33.0 %, a: 44.0 %, you: 52.0 %, it: 57.0 %, that:
59.0 %, your: 62.0 %, and: 64.0 %, in: 66.0 %, to: 68.0
%, on: 69.0 %, not: 70.0 %

[the, a, you, it, that, your, and, in, to, ... w43] = 80%
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Cue ldentification

k-cues (Peter corpus):

— 43 k-cues for 3037 types with 80%
coverage

— 145846 tokens

— k-cues: ['the', 'a’, 'you' it", 'that’, 'your’,
'and’, 'in', 'to’, 'on’, 'not’, '|s' 'thls' T, 'one’,
'for', 'its', 'just', 'of', 'what', 'aII', 'out', 'now’,
'too’, 'gonna’, 'thats’, 'with’, 'are’, 'peter’, 'up’,
'some’, 'there', 'youre', my' 'her 'right’, 'go’,
'have’, 'we’, so' 'he’, 'can’, 'little’, 'over']
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[

Cue ldentification

Rank Word Frequency Co-occ.
1 the 8705 4010
2 of 4220 3000
3 and 3055 3110
< to 3049 2233
Sum|1-4] 12353
1 order
5 In 2629 2030
6 a 2190 1610
7 that 1394 1105
8 1S 1160 8R3
9 was 1090 913
10 it 969 476
11 for 967 043
12 as 847 705
13 on 818 741
14 this 675 456
15 by 664 714
16 with 613 646
7 not 586 377
18 be 548 405
19 but 522 283
20 he 522 314
Sum|1-20] 24954 28




Cue Use

 Distributional properties of cues and other
words with cues:

— Bi-gram models

— Mutual Information (Ml) calculation (Fano,
1961: 27-28; Jelinek, 1968: 120) :

* Left and right point-wise Ml for each kCue
(Elghamry, 2004; Cavar & Elghamry, 2004)
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Cue Use

» Left and right point-wise Mutual
Information P(< 2,3 >)

I(z;y) =lg PP Q)

» Average over left and right proportion
pw-MI:

0.158840 you 0.841160
0.311925 the 0.688075
0.062290 it 0.937710
0.269833 a 0.730167
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Cue Use

» Guessing of Headedness

— Max sidewise point-wise Ml marks
syntactic or structural selection direction

© 2004 by Damir Cavar, Indiana University
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Experiments and Results

« CHILDES database: Peter in Bloom
(1970)

* Child-oriented speech used.
 Number of utterances: 25148
 Number of tokens: 156646

* Number of types: 3086
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Experiments and Results

K Co-occ. Set
the 1093
you 810
a 806

it 673
Total 3382

© 2004 by Damir Cavar, Indiana University 33



Implications

* Problems with MI:

— Sparse data high Ml value

— Token-token ratio is counterintuitive:

« High MI = high variation but selection implies low
variation

« Reason: edge-effect

— Solution: include the edge effect, maximize the edge
effect, but how?

© 2004 by Damir Cavar, Indiana University
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Implications

* Input driven learning is possible:
— MI-based selection preferences

— Frame preferences or structural chunking (cf.

treelets)
— Lexical categorization or classification

© 2004 by Damir Cavar, Indiana University
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Cue ldentification Il

* Higher level cue-identification:
— Sparse data problem on the token level.

— Syntactic Structure
« Syntactic boundaries for n-grams and
distributional properties
— Morphological cues:

« Additional information
— Affixes are cues, i.e. they identify types

o Statistics of types resolves sparse data problem
with tokens

© 2004 by Damir Cavar, Indiana University
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MIl-based parsing

 Mutual Information

— How many bits can we spare by storing two
words together?

— How much is Y expected given that X
occurred (given the bi-gram <X,Y>)?

P /
ZP lq (, !/)
- P(x)P(y)
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MI-based parsing

* Looking at M| of each bi-gram in a sentence:

P(x,y)
P(x)P(y)
» Cutting the sentence/chunk at the lowest M

value into two pieces, and each resulting chunk
again into two pieces, and so on

* — binary branching

[(x;y) = P(x,y)lg
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MI-based parsing

* Looking at M| of each bi-gram in a sentence:

P(x,y)
P(x)P(y)

* Merging elements in an n-gram with the highest
MI value into one constituent, and each
resulting chunk again into the next constituent,
and so on

* — binary branching, n-branching

[(x;y) = P(x,y)lg
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Ml and RE

« MI:
— Frequency sensitive
— Symmetric

* RE (Kullback-Leibler Divergence)

— Frequency sensitive
— Asymmetric

« Syntactic structures are asymmetric!

© 2004 by Damir Cavar, Indiana University

40



Motivation

* Learning and Processing in parallel model
* Unsupervised

 |[ncremental
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Previous approaches

 Magerman ea. (1990)

— Assumptions and algorithm:

MI for POS n-grams
Cut sentence at local Ml minima within a specific window

Variable window size and Generalized M| (= sum over M| for
each possible sequence)

Combining constituents again based on n-gram M

Supervision via grammar, i.e. a list of distituents, e.g. “Noun
Preposition”
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Previous approaches

 Magerman ea. (1990)

— Results:

» Good at parsing short sentences

— average: one error per sentence

— with conjunctions: two errors per sentence
* Long sentences (16-30 words)

— average 5 and 6 errors

« What type of errors?
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Our approach

* Mutual Information (MI) and Relative
Entropy (RE)

* RE for <x,y>: P(
' P(y)lg 5 )
P(y|x)

* With unknown types or tokens:

lg(len(alphabet)) x len(< x,y >)

© 2004 by Damir Cavar, Indiana University

44



Our approach

* Procedure: Cut sentence/chunk
recursively into two sub-constituents

— at minimum M|
—at maximum RE
— for each bi-gram type
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Our approach

« Comparison of accuracy on bi-grams only:
— token - token
— token - type
— type - token

— type - type
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Experiment

* Brown corpus with reduced tag-set (only
basic category, i.e. N, V etc., ca. 14 tags)
for training

* 5% Penn Treebank for evaluation
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Evaluation

 Online evaluation:

— For every input sentence and every output
parse, compare brackets with Penn Treebank
parse.

— Incremental learning and parsing in parallel

« Evaluation of the incremental effect of learning
more words, types and bi-grams.
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Score

Evaluation

2500

2000 +
===ToToMI-Avg
1500 + == TOoTORE-Avg
i1 ToTyMI-Avg
=== TOTYRE-Av(g
= TyTOMI-Avg
TyToRE-Avg
1000 TyTyMI-Avg
TyTyRE-Avg

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316
Penn Tree Bank Utterances



Conclusions

* Type-type relations give best results

— Syntactic relations are determined on the
type level

* RE outperforms M
— Syntactic relations are asymmetric
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Conclusions

* Chunks as domains for n-gram statistics

» Self-supervision:

— Online update of distributional information for
lexical properties
* bias for directional properties

* inclusion of only relevant collocation elements in
vector space for clustering or classification
— dynamic vector space for incremental learning
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Self-supervision

e Selection of cues:

— The smallest set of tokens that co-occurs with
all other tokens (cf. Elghamry & Cavar, 2004)

* On the inverse frequency profile include all the
most frequent tokens that co-occur with all other
tokens.

 MI for such cues is reliable
* RE for such cues is more reliable!
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Self-supervision

« Calculate the average left- and right-side
MI for each cue X:

— Average over all
position is the rig

— Average over all

pi-grams with X in left
nt-side Ml for X.

pDI-grams with X in right

position is the left-side Ml for X.
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Self-supervision

* Average over left- and right-side MI for all
cues X.

— preferred selection direction

* However...
— things are not that simple...
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Self-supervision

* For elements like the, M| will be higher left
of the token, lower right of it.

— Reason: the occurs sentence initially!

* On the type level, Ml values give the
expected results, i.e. number of types
right of Art is lower, Ml increases.
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Self-supervision

« Splitting of chunks is excluded if a type
has a lower side-wise point-wise MI value
on the side of the possible split.

* In the sense of Magerman ea. (1990):

— Generation of “distituents” can be
unsupervised!
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Morphological Cues

* Morphological Structure

— affixes behave like function words

» structural and type landmarks
— co-occur only with specific lexical types

* they are highly frequent

 they are more stable (closed class)
—inclusion in VS

* similarity analysis

* clustering or classification

© 2004 by Damir Cavar, Indiana University
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Morphological Cue Identification

* Hypothesis generation for morphological
structure:
— Random

— Statistical:

 Transitional probabilities (Harris, 1955)
 EM-based (Brent, et al.)

— Alignment based (ABL) (van Zaanen, 2001)
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Morphological Cue Identification

Hypothesis generation: M|

s 1)1 PSS 2Y >)
y€{§Y>}p(<' v > le)lg p(z)p(y)

Pairwise summation of left Ml of x and
right Ml of y.

Cutting morpheme boundaries at local MI-
minima.
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Morphological Cue Identification

* Hypothesis generation: ABL

— Substitutability and Complementarity

« Given two words, the edges of matching
substrings mark morphological boundaries.

— Advantage:

« Learning from previous knowledge.
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Morphological Cue Identification

* Hypothesis evaluation:
— Minimum Description Length
— Relative Entropy
— Mutual Information
— Other quantitative measures
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Morphological Cue Identification

 Grammar size
— Minimum Description Length Principle (MDL)

 From n grammars that describe the same corpus, chose the
grammar with the smallest size (e.g. number of symbols,
length of terminals)

— Size for the morphology grammar:

* morphemes + signature
— dog = [ NULL, -s ]
— -s =[ dog, cat, car, ... ]

— morphological net: morpheme to signature, signature to
morphemes
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Morphological Cue Identification

e Grammar size S

— For all morphemes m, with n the number of morphemes,
sum length of m, and length of the pointer p to a
corresponding signature

— For all signatures o, with m the number of signatures, sum
the product of the length of the signature with the length of
a pointer p to a morpheme

S = (ilen(wi) + len(p)) + [ilen(ci) * len(p))

© 2004 by Damir Cavar, Indiana University 63



Morphological Cue Identification

« MDL Grammar size

— Independent of frequency of elements and
signhatures and elements in the signatures
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Morphological Cue Identification

Grammar size

— Relative Entropy

* From a set of hypotheses about the structure of
an input /, add the hypothesis h to the set of
grammar rules/hypotheses that results in lowest
divergence from the original grammar.
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Morphological Cue Identification

Grammar size

— Relative Entropy

 We calculate RE as a variant of the Kullback-
Leibler Divergence

« Given grammars G1 and G2, choose the grammar
that has the smallest divergence from the initial
grammar GO.
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Morphological Cue Identification

« Grammar size - Relative Entropy
— Kullback-Leibler Divergence

X Pelgc
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Morphological Cue Identification

« Grammar size - Relative Entropy

— simple calculation:
« grammar = the string sequences it can generate
« string sequences = n-grams
 probability of n-grams = their relative frequency
* Q(x) = n-gram statistics of existing string model
* P(x) = n-gram statistics of new string model

« Simplification of calculation:

— If P1(x) and P2(x), integrate the new strings from the
one, that has the smallest RE score given Q(x)
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Morphological Cue Identification

Grammar size - Relative Entropy

— complex calculation:

« for all morphemes and signatures sum of RE
— probability of signature: relative number of pointers to it
— probability of morphemes: relative frequency

* if morpheme/signature not in old grammar, take its
entropy
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Morphological Cue Identification

 Problems:

— Statistics over all do not work out
« generation of nonsense morphemes

o Solution:

— memory split:
* long-term (LTM) and short-term memory (STM)

 short-term memory window of n-utterances (remark on Zipf
and cognition), implemented as a stack (FIFO)

* significance check on morphemes and signatures cyclically
within STM and copy of significant hypotheses to LTM
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Morphological Cue Identification

» Usability related criteria:
— Frequency of Morpheme Boundaries
— Number of Morpheme Boundaries
— Length of Morphemes
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Morphological Cue Identification

Voting-based architecture:

— Every component votes for a hypothesis (=
grammar)

— The hypotheses with the highest votes win.
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Morphological Cue Identification

* Weighting of votes:
— Every voter can be weighted (0-1)
— Means of self-supervision.
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Morphological Cue Identification

 Results:

— English: 100% precision, 80% recall
— Latin: 99% precision, 35% recall

— No self-supervision system so far, manual
choice of values for constraint weights, which
turns out to be quite irrelevant.

« Memory division might be taken to be some sort of
self-supervision instrument.

* If hypotheses enter STM but get eliminated or
never integrated into LTM, punish constraints that
voted highest for these hypotheses (voting history)
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Morphological Cue Identification

 Phases:

— Acquisition phases for morphology observed
in English and in the induction algorithm:
« verbal inflection first

« derivational morphology on main categories
second

* prefixes and infixes last
— Why?

« Because this mirrors the frequency patterns found
in the corporal
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Conclusions

* Supervision suggestions:

— Goldsmith (2002): every stem has at least
one vowel

« a stem is at least a syllable

— We don’t need this information:

» stems: morphemes with a small signature and
highly frequent elements

« affixes: morphemes with a large signature and low
frequent elements
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Conclusions

« Gain:
— extremely high precision suggests:

 induced morphological structures are reliable cues
* integration of morphological properties in the VS

— “lemmatization” or rather “stemming” as a
side effect improves the token statistics

* Expectation:
— Improved cluster purity!
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Target Question

* |s the language input chaotic?
— No!
« Can cues be identified as elementary properties

of the speech signal?

— Of course, and only these are the fundamental cues
for bootstrapping!

« Can these cues serve as learning cues in an
incremental algorithm?

— In fact, the incremental nature is the big advantage of
this system, because of the complexity reduction.
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Target Question

* Do the observable statistical properties
correlate with language properties?

— Sure!
* |s there a plausible, formal model of
bootstrapping?

— | think so! It is the cue-based approach described
here and argued for empirically!

— And: P&P is not one!
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Target Question

Are children sensitive to frequency and do they really
use frequency and entropy for induction?

— | guess so, at least many experiments show that children do this

in all kinds of domains, not just in language tasks, and adults do
it as well.

Does probability play a role in reasoning?
— Of course!

Do we use it in reasoning (plausibility vs. deductive
reasoning)?

— Sure!
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Vector Space

Representing elements in a vector space:
—x=[2.0,49,124, ... ]

— Matrix:
 row = elements
e column = features

— Representation in an n-dimensional space
— Linear Algebra for analysis of vector similarity

— Vector similarity for clustering, grouping,
association
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Clustering

« Data analysis:

— Exploratory
« Hypothesis creation

— Confirmatory
» Decision-making
* Grouping:
— Is there a correlation between data patterns?

— Which data patterns are similar?
 Which words are similar?
 What kind of constructions are similar?

© 2004 by Damir Cavar, Indiana University
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Clustering

* Tryon (1939)
— Unsupervised classification of observed data into
groups (clusters).
* No a priori hypothesis.
» Grouping of objects or individuals.
» Grouping of (random) variables.

* Use nowadays:
— Medicine, Chemistry, Psychiatry, Linguistics, ...
— Development of taxonomies
— Dissection of a population
— ldentification of (potential) terrorists :-)

© 2004 by Damir Cavar, Indiana University
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Clustering

Good overview:
— Everitt (1974) and Everitt et al (2003)

— Unsupervised classification of observed data into groups
(clusters).

* No a priori hypothesis.
» Grouping of objects or individuals.
» Grouping of (random) variables.
Use nowadays:
— Medicine, Chemistry, Psychiatry, Linguistics, ...
— Development of taxonomies
— Dissection of a population
— ldentification of (potential) terrorists :-)
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Clustering

* Objectives today:

— Typology detection or identification.

— Model Fitting.

— Prediction based on groups.
— Hypothesis testing.

— Data exploration.

— Hypothesis generating.

— Data reduction.
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Clustering

» Different names used in the literature:
— Q-analysis
— Typology
— Grouping
— Clumping
— Numerical taxonomy
— Unsupervised pattern recognition
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Clustering vs. Classification

 Classification:
— Grouping on the basis of a priori labels
— Discriminant analysis = supervised classification

— Given a set of labeled patterns, label an unlabeled
pattern

* Clustering:
— Labeling of unlabeled data sets or patterns
— Data-driven, not taxonomy driven = unsupervised
— Labels are related to clusters
— Cluster labels are obtained solely from data
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87



Clustering
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Clustering

Prerequisites:

— Representation of data (pattern and features)

— Data or pattern proximity measure (domain dependent)
— Clustering algorithm

Representation of data:

— pattern and features, graphically or as a vector space

— Number of classes or clusters

— Available and expected patterns

— Features: number, type, scale

— May partially be opaque or unknown, i.e. can be induced
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Clustering

 Feature selection
— Feature extraction

— |dentification of the subset of features that is most
efficient for clustering.

— Transformation of input features and creation of new
salient features.
* Algorithms:

— Input: Data selection and preparation, Feature
selection and/or extraction

— Evaluation: Proximity measures via clustering
algorithm

— Output: Taxonomy, Grouping, Clusters
© 2004 by Damir Cavar, Indiana University
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Clustering

* The choice of pattern proximity measures is:
— Domain or data dependent

— Distance function defined on pairs of patterns
* e. g. Euclidean distance or cosine similarity of vectors etc.

* Grouping
— Hierarchical algorithms with nested groups
— Overlapping groups
— etc.
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Clustering

 Extraction of data sets that are:

— simple
— compact

* Machine oriented:
— efficiency

 Human or cognitively oriented:
— Intuitive and comprehensible
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Clustering

* Pre-clustering evaluation:
— Cluster tendency

* Post-clustering evaluation:
— Cluster validity or purity
— Rather subjective

— Valid: if clusters are not the result of an
artifact or randomly chosen.

© 2004 by Damir Cavar, Indiana University

93



Clustering

Evaluation:
— Cluster validity or purity

— External assessment:

« Compare recovered structure to some a priori structure or
theory (e.g. lexicological models, psycholinguistic evidence)

« Automatically compare taxonomies, hierarchical trees,
distance of centroids etc.

— Internal assessment:
 Are resulting clusters intrinsically appropriate for the data.

— Relative test:
« Compare two resulting clusters and measure relative merit.
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Clustering

* Clustering algorithms
— Vast number
— Selection on the basis of:

Way in forming clusters

Data-structure

Robustness (changes, data types)
Computational efficiency

Choice of similarity measure

Data amount (small, large)

Use of domain knowledge or heuristics
etc.
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Clustering

» Types of algorithms and techniques:

— Hierarchical
— Optimization
« K-means Clustering
« Expectation Maximization (EM)

— Density or mode-seeking
— Clumping
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Clustering

* Formalization:

— Feature Vector, Datum, Pattern:
» With d measurements: x = (x4, X5, ..., Xy)
* X4, X5, ..., IN general: x; is a feature or attribute of x
» d = dimension of pattern or pattern space

— Pattern set:
° X: {X1, X2, . Xn}
» The ith pattern in X: X; = (X; 1, X; 2 -+ X q)
. Or

© 2004 by Damir Cavar, Indiana University 97



Vector Space

X111 X12 X1.d
X921 X229 X9.d
XkEk1 XE2 Xk.d
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Clustering

* Hard clustering techniques:

— Assign a label /; to each pattern x; identifying
its class.

— For a set of patterns X the set of labels is L =
{l,, I,, ..., .} with [. €{1, ..., k}, with k the
number of clusters.

* Fuzzy or soft clustering:

— Assign each pattern x; a fractional degree of
membership f; in each output cluster j.
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Centroid
2, X

e n = number of dimensions

 Example:
= (2, 2)
-b=(3,4)

— centroid = ( (2+3)/2, (2+4)/2 ) = (2.5, 3)
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Distance

Euclidean Distance
— for two dimensions:

1.-""":331 — 12)2 + (1 — ¥2)*.

— for n dimensions:

d(a,b) = xril — Y1)+ (T2 —y2)2 + - (70— Yn)?
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Clustering

* Hierarchical clustering

* Optimization clustering
— K-means
— Expectation Maximization
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