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Information Theory

• Mutual Information

– How many bits can we spare by storing <xy>
together, rather than each separate?

– How much do we expect y given x?

I(X;Y ) = P(XY )log2
P(XY )

P(X)P(Y )
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Information Theory

• Relative Entropy

– Distance between two distributions:
• Independent: P(y)
• Conditional: P(y|x)

– How many bits more would we need to represent
<xy> when we store them together, or when we store
them as separate units?
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Cue-based Learning

• Rationalist view:
– Finite set of parameters P = {p1, p2, ..., pn}
– Each p is a variable for a value from a finite

set of values.
– Specific values for the respective parameter

explain language variability as well as
language acquisition.
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Cue-based Learning

• Parameter values are variable from the outset.
• Most/some parameters are associated with

specific lexical properties.
• A set of lexical items has to be learned (i.e.

mental lexicon).
• Cues in the input have to be identified to set

parameters.
• General idea: E-language properties are

mapped to I-language properties.
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Cue-based Learning

• Paradox:
– Cues are innate (Lightfoot, 1999)
– Cues are identified by a specific innate e-

language acquisition device, e.g.
Superparser (Fodor & Teller, 2000)
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Cue-based Learning

• Conceptual problems:
– Everything is innate: e- and i-language
– High-level orientation:

• Syntax or semantics

• Myths:
– Chaotic input!
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Cue-based Learning

• Central research questions:
– Can elementary language units and their

properties be identified and associated with I-
language parameters?

– What is learnable and what can be learned
given what kind of knowledge?
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Cue-based Learning

• Favorable outcome:
– Cues can be identified without additional and

language specific machinery.
– Cues are used to set specific parameters.
– Snowball effect or chain reaction:

• Induced parameter values and cues are used to
derive further (secondary) cues, which set more
parameters, and so on.
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Cue-based Learning

• Iterative & Incremental Cue-based
Learning
– Initial Bootstrapping Phase: An initial set of

cues K identifies a specific parameter value
P1 given some input.

– Subsequent Bootstrapping Phases:
Together with the set of cues K and the
knowledge of parameter value P1 a new
set of cues K’ is derived, and so on.



© 2004 by Damir Ćavar, Indiana University 11

Cue-based Learning

• Iterative & Incremental Cue-based
Learning
– Initial Bootstrapping Phase: An initial set of

cues K identifies a specific parameter value
P1 given some input.
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Cue Identification

• How can we identify the initial set of cues,
i.e. the kernel cues (k-cues)?

• Use observable properties of language
input:
– Intrinsic and Extrinsic properties of

elementary language units.
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Cue Identification

• Intrinsic properties of elementary
language units:
– Frequency
– Length

• Number of X
– ...
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Cue Identification

• Hypothesis 1:
– Frequency is a cue for lexical information.
– Length is related to frequency.

• Testing:
– Frequency (and length) based clustering of

words.
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Cue Identification

• Weaknesses:
– Intrinsic features alone are insufficient.
– Clustering on intrinsic and extrinsic features

is more promising.
• Cue identification on the basis of intrinsic

and extrinsic features without clustering...
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Cue Identification

• Distributional cues:
– Collocations inform us about the type of a

lexical element:
• the...: followed by N, i.e. a syntactic type
• of...: followed by Art, i.e. a syntactic type
• John speaks...: followed by a referent/name to/of

a language, i.e. a concept
• my name is...: followed by a proper name, i.e.

syntactic type and concept
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Cue Identification

• Hypothesis 2:
– Function words (as well as vowels,

derivational and inflectional morphemes
etc.) = highly frequent units are the
structural landmarks.

• Testing:
– Distributional properties of function words

and substantives (and the relation between
them).
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Cue Identification

• Elghamry (2004), Ćavar & Elghamry
(2004):
– Language input is highly structured!
– Distributional regularities in the input

provide efficient bootstraps into the
grammar of the input language.

– There is a set of elements in the input
(cues) that are learnable and that make
language acquisition possible.
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Cue Identification

• Language Learnability can be reduced to
Cue Learnability.

• Categories and frames are cue-learnable.
• Parameter setting is cue-feasible.
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Cues as Features in VS

• Mapping of lexical properties on a vector
space:
– rows: single words (types or tokens)
– columns: numerical (real number)

representation of single cues
• inherent properties: length, frequency, ...
• distributional properties: collocation with

frequency, position in clause
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Cues as Features in VS

• Similarity measure for rows
– single feature based
– multiple feature based
– over whole vector space

• Clustering of lexical items
– Cluster represent types, i.e. can be replaced with a

symbol, i.e. single words can be tagged or replaced
with a symbol

– Distributional regularities can be extracted from
symbol collocations: rule formation
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Cues as Features in VS

• Dimension problem:
– Distributional properties

• high number of columns = complex similarity
measures

• identification of relevant distributional cues
– but how?
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Cue Identification

• The phases of Cue-Based Learning
– Identification of cues
– Cue-based induction (e.g. categorization)
– Generation of new cues:

• Using cue-based categories in for frame
identification (subcategorization)



© 2004 by Damir Ćavar, Indiana University 24

Cue Identification

• Cue Extraction Criterion (K)
– The set of Cues, K, is the smallest subset of

the elements {k1, ..., km} in a corpus R such
that all elements in R occurs at least once
with at least one member in K.
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Cue Identification

• Approximate Cue Extraction Procedure
– Build decreasing frequency profile for all

the words in corpus R.
– The set of cues K = {w1, …, wm} is the list of

most frequent words, such that the number
of words it co-occurs with corresponds to
the number of words in the corpus.
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Cue Identification

• k-cue identification:
– From a decreasing frequency profile of types

include all the types that co-occur with all the other
word types in the corpus.

– Stop, if no improvement in coverage: stagnation of
k-cue - type ratio

– Coverage:
• the: 33.0 %, a: 44.0 %, you: 52.0 %, it: 57.0 %, that:

59.0 %, your: 62.0 %, and: 64.0 %, in: 66.0 %, to: 68.0
%, on: 69.0 %, not: 70.0 %

• [the, a, you, it, that, your, and, in, to, ... w43] = 80%
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Cue Identification

• k-cues (Peter corpus):
– 43 k-cues for 3037 types with 80%

coverage
– 145846 tokens
– k-cues: ['the', 'a', 'you', 'it', 'that', 'your',

'and', 'in', 'to', 'on', 'not', 'is', 'this', 'i', 'one',
'for', 'its', 'just', 'of', 'what', 'all', 'out', 'now',
'too', 'gonna', 'thats', 'with', 'are', 'peter', 'up',
'some', 'there', 'youre', 'my', 'her', 'right', 'go',
'have', 'we', 'so', 'he', 'can', 'little', 'over']
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Cue Identification
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Cue Use

• Distributional properties of cues and other
words with cues:
– Bi-gram models
– Mutual Information (MI) calculation (Fano,

1961: 27-28; Jelinek, 1968: 120) :
• Left and right point-wise MI for each kCue

(Elghamry, 2004; Ćavar & Elghamry, 2004)
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0.158840 you 0.841160

0.311925 the 0.688075

0.062290 it 0.937710

0.269833 a 0.730167

Cue Use

• Left and right point-wise Mutual
Information

• Average over left and right proportion
pw-MI:
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Cue Use

• Guessing of Headedness
– Max sidewise point-wise MI marks

syntactic or structural selection direction
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Experiments and Results

• CHILDES database: Peter in Bloom
(1970)

• Child-oriented speech used.
• Number of utterances: 25148
• Number of tokens: 156646
• Number of types: 3086
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Experiments and Results
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Implications

• Problems with MI:
– Sparse data high MI value
– Token-token ratio is counterintuitive:

• High MI = high variation but selection implies low
variation

• Reason: edge-effect
– Solution: include the edge effect, maximize the edge

effect, but how?
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Implications

• Input driven learning is possible:
– MI-based selection preferences
– Frame preferences or structural chunking (cf.

treelets)
– Lexical categorization or classification
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Cue Identification II

• Higher level cue-identification:
– Sparse data problem on the token level.
– Syntactic Structure

• Syntactic boundaries for n-grams and
distributional properties

– Morphological cues:
• Additional information

– Affixes are cues, i.e. they identify types
• Statistics of types resolves sparse data problem

with tokens
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MI-based parsing

• Mutual Information
– How many bits can we spare by storing two

words together?
– How much is Y expected given that X

occurred (given the bi-gram <X,Y>)?
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MI-based parsing

• Looking at MI of each bi-gram in a sentence:

• Cutting the sentence/chunk at the lowest MI
value into two pieces, and each resulting chunk
again into two pieces, and so on

• → binary branching
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MI-based parsing

• Looking at MI of each bi-gram in a sentence:

• Merging elements in an n-gram with the highest
MI value into one constituent, and each
resulting chunk again into the next constituent,
and so on

• → binary branching, n-branching
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MI and RE

• MI:
– Frequency sensitive
– Symmetric

• RE (Kullback-Leibler Divergence)
– Frequency sensitive
– Asymmetric

• Syntactic structures are asymmetric!
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Motivation

• Learning and Processing in parallel model

• Unsupervised

• Incremental
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Previous approaches

• Magerman ea. (1990)
– Assumptions and algorithm:

• MI for POS n-grams
• Cut sentence at local MI minima within a specific window
• Variable window size and Generalized MI (= sum over MI for

each possible sequence)
• Combining constituents again based on n-gram MI
• Supervision via grammar, i.e. a list of distituents, e.g. “Noun

Preposition”
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Previous approaches

• Magerman ea. (1990)
– Results:

• Good at parsing short sentences
– average: one error per sentence
– with conjunctions: two errors per sentence

• Long sentences (16-30 words)
– average 5 and 6 errors

• What type of errors?
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Our approach

• Mutual Information (MI) and Relative
Entropy (RE)

• RE for <x,y>:

• With unknown types or tokens:
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Our approach

• Procedure: Cut sentence/chunk
recursively into two sub-constituents
– at minimum MI
– at maximum RE
– for each bi-gram type
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Our approach

• Comparison of accuracy on bi-grams only:
– token - token
– token - type
– type - token
– type - type
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Experiment

• Brown corpus with reduced tag-set (only
basic category, i.e. N, V etc., ca. 14 tags)
for training

• 5% Penn Treebank for evaluation
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Evaluation

• Online evaluation:
– For every input sentence and every output

parse, compare brackets with Penn Treebank
parse.

– Incremental learning and parsing in parallel
• Evaluation of the incremental effect of learning

more words, types and bi-grams.
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Evaluation

• Results:
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Conclusions

• Type-type relations give best results
– Syntactic relations are determined on the

type level

• RE outperforms MI
– Syntactic relations are asymmetric
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Conclusions

• Chunks as domains for n-gram statistics
• Self-supervision:

– Online update of distributional information for
lexical properties

• bias for directional properties
• inclusion of only relevant collocation elements in

vector space for clustering or classification
– dynamic vector space for incremental learning
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Self-supervision

• Selection of cues:
– The smallest set of tokens that co-occurs with

all other tokens (cf. Elghamry & Ćavar, 2004)
• On the inverse frequency profile include all the

most frequent tokens that co-occur with all other
tokens.

• MI for such cues is reliable
• RE for such cues is more reliable!



© 2004 by Damir Ćavar, Indiana University 53

Self-supervision

• Calculate the average left- and right-side
MI for each cue X:
– Average over all bi-grams with X in left

position is the right-side MI for X.
– Average over all bi-grams with X in right

position is the left-side MI for X.
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Self-supervision

• Average over left- and right-side MI for all
cues X:
– preferred selection direction

• However...
– things are not that simple...
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Self-supervision

• For elements like the, MI will be higher left
of the token, lower right of it.
– Reason: the occurs sentence initially!

• On the type level, MI values give the
expected results, i.e. number of types
right of Art is lower, MI increases.
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Self-supervision

• Splitting of chunks is excluded if a type
has a lower side-wise point-wise MI value
on the side of the possible split.

• In the sense of Magerman ea. (1990):
– Generation of “distituents” can be

unsupervised!
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Morphological Cues

• Morphological Structure
– affixes behave like function words

• structural and type landmarks
– co-occur only with specific lexical types

• they are highly frequent
• they are more stable (closed class)

– inclusion in VS
• similarity analysis
• clustering or classification
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Morphological Cue Identification

• Hypothesis generation for morphological
structure:
– Random
– Statistical:

• Transitional probabilities (Harris, 1955)
• EM-based (Brent, et al.)

– Alignment based (ABL) (van Zaanen, 2001)
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• Hypothesis generation: MI

• Pairwise summation of left MI of x and
right MI of y.

• Cutting morpheme boundaries at local MI-
minima.

Morphological Cue Identification
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Morphological Cue Identification

• Hypothesis generation: ABL
– Substitutability and Complementarity

• Given two words, the edges of matching
substrings mark morphological boundaries.

– Advantage:
• Learning from previous knowledge.
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Morphological Cue Identification

• Hypothesis evaluation:
– Minimum Description Length
– Relative Entropy
– Mutual Information
– Other quantitative measures
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Morphological Cue Identification

• Grammar size
– Minimum Description Length Principle (MDL)

• From n grammars that describe the same corpus, chose the
grammar with the smallest size (e.g. number of symbols,
length of terminals)

– Size for the morphology grammar:
• morphemes + signature

– dog = [ NULL, -s ]
– -s = [ dog, cat, car, ... ]
– morphological net: morpheme to signature, signature to

morphemes
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Morphological Cue Identification

• Grammar size S
– For all morphemes m, with n the number of morphemes,

sum length of m, and length of the pointer p to a
corresponding signature

– For all signatures σ, with m the number of signatures, sum
the product of the length of the signature with the length of
a pointer p to a morpheme

S = len(wi ) + len(p)
i=1

n

!"#$
%
&'
+ len(( i ) * len(p)

i=1

m

!"#$
%
&'
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Morphological Cue Identification

• MDL Grammar size
– Independent of frequency of elements and

signatures and elements in the signatures
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Morphological Cue Identification

• Grammar size
– Relative Entropy

• From a set of hypotheses about the structure of
an input i, add the hypothesis h to the set of
grammar rules/hypotheses that results in lowest
divergence from the original grammar.
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Morphological Cue Identification

• Grammar size
– Relative Entropy

• We calculate RE as a variant of the Kullback-
Leibler Divergence

• Given grammars G1 and G2, choose the grammar
that has the smallest divergence from the initial
grammar G0.
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Morphological Cue Identification

• Grammar size - Relative Entropy
– Kullback-Leibler Divergence
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• Grammar size - Relative Entropy
– simple calculation:

• grammar = the string sequences it can generate
• string sequences = n-grams
• probability of n-grams = their relative frequency
• Q(x) = n-gram statistics of existing string model
• P(x) = n-gram statistics of new string model
• Simplification of calculation:

– If P1(x) and P2(x), integrate the new strings from the
one, that has the smallest RE score given Q(x)

Morphological Cue Identification
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• Grammar size - Relative Entropy
– complex calculation:

• for all morphemes and signatures sum of RE
– probability of signature: relative number of pointers to it
– probability of morphemes: relative frequency

• if morpheme/signature not in old grammar, take its
entropy

Morphological Cue Identification
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• Problems:
– Statistics over all do not work out

• generation of nonsense morphemes

• Solution:
– memory split:

• long-term (LTM) and short-term memory (STM)
• short-term memory window of n-utterances (remark on Zipf

and cognition), implemented as a stack (FIFO)
• significance check on morphemes and signatures cyclically

within STM and copy of significant hypotheses to LTM

Morphological Cue Identification
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Morphological Cue Identification

• Usability related criteria:
– Frequency of Morpheme Boundaries
– Number of Morpheme Boundaries
– Length of Morphemes
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Morphological Cue Identification

• Voting-based architecture:
– Every component votes for a hypothesis (=

grammar)
– The  hypotheses with the highest votes win.
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Morphological Cue Identification

• Weighting of votes:
– Every voter can be weighted (0-1)
– Means of self-supervision.
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Morphological Cue Identification

• Results:
– English: 100% precision, 80% recall
– Latin: 99% precision, 35% recall
– No self-supervision system so far, manual

choice of values for constraint weights, which
turns out to be quite irrelevant.

• Memory division might be taken to be some sort of
self-supervision instrument.

• If hypotheses enter STM but get eliminated or
never integrated into LTM, punish constraints that
voted highest for these hypotheses (voting history)
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Morphological Cue Identification

• Phases:
– Acquisition phases for morphology observed

in English and in the induction algorithm:
• verbal inflection first
• derivational morphology on main categories

second
• prefixes and infixes last

– Why?
• Because this mirrors the frequency patterns found

in the corpora!
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Conclusions

• Supervision suggestions:
– Goldsmith (2002): every stem has at least

one vowel
• a stem is at least a syllable

– We don’t need this information:
• stems: morphemes with a small signature and

highly frequent elements
• affixes: morphemes with a large signature and low

frequent elements
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Conclusions

• Gain:
– extremely high precision suggests:

• induced morphological structures are reliable cues
• integration of morphological properties in the VS

– “lemmatization” or rather “stemming” as a
side effect improves the token statistics

• Expectation:
– improved cluster purity!
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Target Question
• Is the language input chaotic?

– No!
• Can cues be identified as elementary properties

of the speech signal?
– Of course, and only these are the fundamental cues

for bootstrapping!
• Can these cues serve as learning cues in an
incremental algorithm?
– In fact, the incremental nature is the big advantage of

this system, because of the complexity reduction.
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Target Question
• Do the observable statistical properties

correlate with language properties?
– Sure!

• Is there a plausible, formal model of
bootstrapping?
– I think so! It is the cue-based approach described

here and argued for empirically!
– And: P&P is not one!
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Target Question
• Are children sensitive to frequency and do they really

use frequency and entropy for induction?
– I guess so, at least many experiments show that children do this

in all kinds of domains, not just in language tasks, and adults do
it as well.

• Does probability play a role in reasoning?
– Of course!

• Do we use it in reasoning (plausibility vs. deductive
reasoning)?
– Sure!
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Vector Space

• Representing elements in a vector space:
– x = [ 2.0, 4.9, 12.4, ... ]
– Matrix:

• row = elements
• column = features

– Representation in an n-dimensional space
– Linear Algebra for analysis of vector similarity
– Vector similarity for clustering, grouping,

association
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Clustering

• Data analysis:
– Exploratory

• Hypothesis creation

– Confirmatory
• Decision-making

• Grouping:
– Is there a correlation between data patterns?
– Which data patterns are similar?

• Which words are similar?
• What kind of constructions are similar?
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Clustering
• Tryon (1939)

– Unsupervised classification of observed data into
groups (clusters).

• No a priori hypothesis.
• Grouping of objects or individuals.
• Grouping of (random) variables.

• Use nowadays:
– Medicine, Chemistry, Psychiatry, Linguistics, ...
– Development of taxonomies
– Dissection of a population
– Identification of (potential) terrorists :-)
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Clustering
• Good overview:

– Everitt (1974) and Everitt et al (2003)
– Unsupervised classification of observed data into groups

(clusters).
• No a priori hypothesis.
• Grouping of objects or individuals.
• Grouping of (random) variables.

• Use nowadays:
– Medicine, Chemistry, Psychiatry, Linguistics, ...
– Development of taxonomies
– Dissection of a population
– Identification of (potential) terrorists :-)
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Clustering

• Objectives today:
– Typology detection or identification.
– Model Fitting.
– Prediction based on groups.
– Hypothesis testing.
– Data exploration.
– Hypothesis generating.
– Data reduction.
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Clustering

• Different names used in the literature:
– Q-analysis
– Typology
– Grouping
– Clumping
– Numerical taxonomy
– Unsupervised pattern recognition
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Clustering vs. Classification

• Classification:
– Grouping on the basis of a priori labels
– Discriminant analysis = supervised classification
– Given a set of labeled patterns, label an unlabeled

pattern
• Clustering:

– Labeling of unlabeled data sets or patterns
– Data-driven, not taxonomy driven = unsupervised
– Labels are related to clusters
– Cluster labels are obtained solely from data
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Clustering
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Clustering
• Prerequisites:

– Representation of data (pattern and features)
– Data or pattern proximity measure (domain dependent)
– Clustering algorithm

• Representation of data:
– pattern and features, graphically or as a vector space
– Number of classes or clusters
– Available and expected patterns
– Features: number, type, scale
– May partially be opaque or unknown, i.e. can be induced



© 2004 by Damir Ćavar, Indiana University 90

Clustering
• Feature selection

– Feature extraction
– Identification of the subset of features that is most

efficient for clustering.
– Transformation of input features and creation of new

salient features.
• Algorithms:

– Input: Data selection and preparation, Feature
selection and/or extraction

– Evaluation: Proximity measures via clustering
algorithm

– Output: Taxonomy, Grouping, Clusters



© 2004 by Damir Ćavar, Indiana University 91

Clustering

• The choice of pattern proximity measures is:
– Domain or data dependent
– Distance function defined on pairs of patterns

• e. g. Euclidean distance or cosine similarity of vectors etc.

• Grouping
– Hierarchical algorithms with nested groups
– Overlapping groups
– etc.
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Clustering

• Extraction of data sets that are:
– simple
– compact

• Machine oriented:
– efficiency

• Human or cognitively oriented:
– intuitive and comprehensible
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Clustering

• Pre-clustering evaluation:
– Cluster tendency

• Post-clustering evaluation:
– Cluster validity or purity
– Rather subjective
– Valid: if clusters are not the result of an

artifact or randomly chosen.
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Clustering

• Evaluation:
– Cluster validity or purity
– External assessment:

• Compare recovered structure to some a priori structure or
theory (e.g. lexicological models, psycholinguistic evidence)

• Automatically compare taxonomies, hierarchical trees,
distance of centroids etc.

– Internal assessment:
• Are resulting clusters intrinsically appropriate for the data.

– Relative test:
• Compare two resulting clusters and measure relative merit.
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Clustering

• Clustering algorithms
– Vast number
– Selection on the basis of:

• Way in forming clusters
• Data-structure
• Robustness (changes, data types)
• Computational efficiency
• Choice of similarity measure
• Data amount (small, large)
• Use of domain knowledge or heuristics
• etc.
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Clustering

• Types of algorithms and techniques:
– Hierarchical
– Optimization

• K-means Clustering
• Expectation Maximization (EM)

– Density or mode-seeking
– Clumping
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Clustering

• Formalization:
– Feature Vector, Datum, Pattern:

• With d measurements: x = (x1, x2, ..., xd)
• x1, x2, ..., in general: xi is a feature or attribute of x
• d = dimension of pattern or pattern space

– Pattern set:
• Χ = {x1, x2, ..., xn}
• The ith pattern in X: xi = (xi,1, xi,2, ..., xi,d)
• or
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Vector Space
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Clustering

• Hard clustering techniques:
– Assign a label li to each pattern xi identifying

its class.
– For a set of patterns X the set of labels is L =

{l1, l2, ..., ln} with li ∈{1, ..., k}, with k the
number of clusters.

• Fuzzy or soft clustering:
– Assign each pattern xi a fractional degree of

membership fij in each output cluster j.
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Centroid

• n = number of dimensions
• Example:

– a = (2, 2)
– b = (3, 4)
– centroid = ( (2+3)/2, (2+4)/2 ) = (2.5, 3)

x =

x
ii=1

n

!
n
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Distance

• Euclidean Distance
– for two dimensions:

– for n dimensions:
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Clustering

• Hierarchical clustering
• Optimization clustering

– K-means
– Expectation Maximization


