Chatbots and NLP

Damir Cavar
Indiana University
June 2018
Agenda

• Chatbots then
• and now
• NLP and Chatbots
• Issues
• Modest Prediction of Sensible R&D Directions
From Verbmobil to Chatbots

• Speech2Speech MT
 • Dialog Models
 • ASR
 • Machine Translation
 • NLP

• Chatbots and Avatars
 • Text input
 • Text to speech output
 • Virtual communication partner with lip-synchronization
Avatar

• Web-based
• Terminals in stores

Valerie (Charamel GmbH)
Knowledge Graphs

- RDB-based SemNet
- (before OWL, etc.)
NLP Technologies

• Back in 2000
 • Regular expressions and pattern matching
 • Template-based text generation
 • Finite State Dialog modeling
 • Knowledge Graphs (SemNets) on RDBs
 • Text2Speech
 • Part-of-speech tagging
 •Parsing
 • Machine Translation
NLP Technologies

• Focus on limited models and technologies:
 • Dependency Parse Trees
 • Treebank-derived Constituent Tree Parsers
 • Label/Tag-based Semantic Role Labeling
 • ...
 • Pipeline-architecture as such:
 • Isolated modules with very limited NLP-focus chained in an input-output pipeline
 • CoreNLP, spaCy, OpenNLP, NLTK, UIMA, ...
NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
 • Part-of-Speech Tagging:
 • Use: word-level part of speech annotation with a limited set of tags that encode some morphosyntactic features
 • **F1 score: 95% - 97%** based on WSJ portion of Penn Treebank, more than 100 treebanks for UD
 • Best performing: Deep Learning Approaches (alternatives not evaluated)
NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
 • Constituent Tree Parsing:
 • Use: phrasal structure; relations, hierarchies and ambiguities between phrases; semantic scope relation; ...
 • **F1 score: 92% - 95%** based on Penn Treebank
 • Best performing: Deep Learning Approaches (alternatives not evaluated)
 • Dependency Parsing:
 • Use: dependency relations between elements in the sentence; simplified annotation of functional relations: Subject, Object, Modifier, ...
 • **F1 score** on labels and relations: 91% - 94% based on Stanford Dependency conversion of the Penn Treebank
 • Best performing: Deep Learning Approaches (alternatives not evaluated)
NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
 • Named Entity Recognition:
 • Use: entity labeling – person, institution, location, time, currency, ...
 • **F1 score: 90% - 92%** based on Reuters RCV1 corpus with four NE-types (PER, LOC, ORG, MISC) using BIO notation
 • Best performing: Deep Learning Approaches (alternatives not evaluated)
 • Semantic Role Labeling:
 • Use: Label predicate argument structure (*Who gave what to who*): Predicate, Subject, Object, entity and relation extraction
 • **F1 score: 81% - 84%** based on OntoNotes benchmark of the Penn Treebank
 • Best performing: Deep Learning Approaches (alternatives not evaluated)
NLP Technologies

• F1 score margins and error rates:
 • Basic token-level classification: error of approx. 4%
 • Word-level annotation, syntactic parsing: 10%
 • Semantic-level annotation: 30%

• Not much has changed since 2000!

• Situation check:
 • Mono-culture of training/test-datasets for data driven ML/DL-methods
 • Limitation to weak linguistic models (e.g. Constituent Trees, NE-classes, Semantic roles), annotation standards (e.g. Dependencies)
NLP Technologies

• Situation check:
 • Limited use of NLP-pipelines: PoS-tagging, Lemmatization
 • CoreNLP: Constituent Parser; Dependency Parser; Coreference Analysis; …
 • spaCy: Dependency Parser
 • NLTK: WordNet
 • Lack of APIs that interface to linguistic output data structures
 • NLP developers lack understanding of the linguistic annotations generated by pipelines or tools
NLP Example

• Stanford Open IE (paper and website)
 • Lack of intuition of dependency relations
 • Modification of ROOT (took) by “born in a small town” is counterintuitive
 • Lack of:
 • Clause level hierarchical relation analysis (subordinate clauses and scope)
 • Tempus, Mood, ... annotation
 • Pragmatic and semantic properties (and relevant linguistic features)
NLP Example

• Scope between clauses:
 • Reuters reported [that [Google bought Apple]]
 • Reuters did not report [that [Google bought Apple]]
 • Reuters did not deny [that [Google bought Apple]]

• Tense:
 • Tim Cook bought Google.
 • Tim Cook will buy Google one day.
NLP Technologies

• Applied to real text:
 • Sentence length over 10 to 15 tokens breaks most probabilistic or NN parsers (Dependency parsers, in particular)

• Problematic domains, for example:
 • SEC, Financial, or Business Reports
 • Case-law and legal documents
 • Medical text (patient reports, documentations)

• Current free and open NLP-pipelines are of limited use.

• Are they of any use for Chatbot technologies?
State of the Art

• Δ between 2000 – 2018
 • ASR improvements
 • Knowledge Graphs, Ontologies
 • Integration
 • Data sources
 • Interfaces, multi-modal interaction
 • Device architecture

• Is there any significant progress in ___ ?
 • Dialog management
 • NLP at the utterance and discourse level
 • Semantics and Pragmatics
Knowledge Representations

• General World Knowledge
 • From static to dynamic, with inferencing, reasoning

• Domain Specific Knowledge
 • Medical, Financial, Business, Legal, etc.

• Discourse specific Knowledge
 • Simple dialog memory (concepts and their linguistic features, relevant for anaphora resolution, coreference analysis)
 • Knowledge Graph or Ontology of semantic concept space in encapsulated discourse
Directions

• Speech
 • Prosodie – Semantics / Pragmatics interface

• Semantics and Pragmatics
 • Entailment
 • Quantifiers
 • Scope
 • Implicatures
 • Presuppositions
Prosodie – Semantics / Pragmatics

• Suprasegmental speech properties
 • Intonation Contour
 • ASR output: what did you buy
 • Speech properties:
 • interrogative or rhetorical, echo question
 • Pitch Accent (in specific languages)
 • Simple accent detection:
 • White board vs. whiteboard
 • HOtel vs. hoTEL
 • Focus Stress:
 • Contrastive Stress: I bought THAT CAR. I BOUGHT that car.
 • Verum Focus: I DID buy that car.
Prosodie – Semantics / Pragmatics

• Data sources
 • Limited corpora for a few languages
 • Richer documentation without audio data component
 • Creation of corpora with relevant speech properties and linguistic annotation
 (mapping of content to some semantic and pragmatic level)

• Efficient speech signal level processing:
 • librosa
 • OpenSMILE
 • Etc.
Speech Acts, Implicatures, Presuppositions

• Deep Linguistic Processing:
 • A to B: “I bought the blue car.”
 • Implicature:
 • A and B talked about the event earlier.
 • There is a set of cars, at least 2 that was in the range of A’s action.
 • None of the other cars in the set is blue.
 • Linguistic indicators:
 • Definiteness via “the”
 • Specificity of the Noun Phrase
Speech Acts, Implicatures, Presuppositions

• Deep Linguistic Processing:
 • “Peter fed his cat.”
 • Presupposition:
 • Peter owns a cat.
 • Peter owns cat food.
 • ...
 • Linguistic indicators:
 • Possessive

• Types:
 • Universal linguistic properties (see Grice Maxims, Relevance Theory)
 • Language specific properties (dependency to cultural and sociological aspects)
 • Domain specific: e.g. “to be like milk”
NLP and Future Chatbots

• Technology trends might include:
 • Speech signal properties that relate to:
 • Sentiment, Emotions
 • Prosodie and Semantics/Pragmatics Interface
 • Properties of speakers, general and temporary
 • Pragmatics and Semantics
 • Implicatures and Presuppositions, Natural Logic, Entailment
 • Irony, Humor, Sarcasm, Deception...
 • Knowledge Representation
 • Dynamic, Cascaded or Interconnected KRs
 • Multi-Modal systems (speech/language, image, gesture, mimic)
 • NLP
 • Deep Learning and hybrid systems, knowledge-based engineering and data-driven (M|D)L