
Comments and Technical Details

CroMo is highly efficient, segmenting and annotating approx. 50,000 tokens per second. It is
highly flexible, allowing for dynamic extension of the morpheme base and annotation schema,
while minimizing or avoiding changes and adaptations in the code base. In addition to that,
CroMo is highly efficient with respect to persistent and runtime memory. The binary size that
includes more than 120,000 morphemes of Croatian is approx. 5 MB for a Mac OS X or Ubuntu
AMD64 Linux.

It is also open source, coded in a platform independent way, relying on open source and free com-
ponents (GCC, Ragel, Python, Scheme). The code and documentation, with detailed evaluation
results is available at:

http://personal.unizd.hr/ dcavar/CroMo/

The presented work is part of a research project supported by the Ministry of Science, Education
and Sports of the Republic of Croatia, grant 212-2120920-0930.

General Concept

Research and applications using Natural Language Processing tools and linguistic data is facing
a serious problem:

• The lack of interoperability, i.e. annotation compatibility and format, in particular on the lin-
guistic level.

CroMo uses an annotation schema based on GOLD. The taxonomy of concepts and properties
defined in GOLD, in particular the ones related to morphology, morpho-syntax, and semantic
are mapped on a bit-vector for efficiency, maintaining feature inheritance and sub-relations, i.e.
incorporating in some sense implicatures.

top-node concept

sub-class

terminal-classes

GOLD can be used as an interlingua, i.e. it can in principle be translated to various tag-sets
and annotation schema. Given the fact that GOLD is embedded in a development process and
provides explanations for concepts and features, annotation consistency for linguistic annotators
is easier to maintain.

The corresponding C++ code for encoding and decoding of the bit-vector representation is au-
tomatically generated from the morpheme annotations. In addition to the GOLD-based features,
CroMo accepts user-defined features, that are mapped on bit-vectors in the same way. These
features can be added any time during the development process, and they do not imply changes
of the programs code base.

This approach in CroMo allows for flexibility for the lexicon developers, maximizing interoper-
ability, and maintaining high performance and efficiency of the resulting analyzer.

General Architecture

The lexical basis for CroMo is prepared in tables and spreadsheets. Morphemes and allomorphs
are grouped together on the basis of:

• shared feature bundles

• rules that compose complex FSAs

Each morpheme group represents one DFSA with an associated emission tuple of 1 to n feature
bundles, represented as feature vectors in a long integer data type. Each morpheme group is
associated with a variable name for rule definition.

Rules are defined in independent files, using the Ragel regular expression syntax with operators
for optionality, recursion, concatenation etc., as for example:

verbAspectPrefixes? . verbAtiRoots . verbInflectionalSuffixes

The rules and morpheme sets are used to generate Ragel automata definition files. Ragel compiles
the automata definitions into C-code, i.e. one monolithic automaton encoded in C-jump code, as
well as a dot-representation for visualization in Graphviz. Predefined C++ code together with
the Ragel generated C-code is compiled into the binary format, using current GCC versions. The
output is a dynamic library and an executable binary.

Morpheme tables

Ragel code

Code

Binary

DOT

Rules

Code

The output is a tuple of a stem lemma, a root lemma, and tuples with:

• byte-offsets (begin and end indexes in the input string) for each single morpheme

• long integer based bit-vector encoding the morphological, morphosyntactic, semantic and other
relevant features for each single morpheme, which can be mapped on the corresponding string
representation such that the output would be a sequence of features represented as character
strings

This architecture does not:

• transcode the character mappings, i.e. it is completely independent of the character code pages,

• restrict itself to specific feature definitions or tag-sets, i.e. it is open and extensible, allowing
for extension of the encoding bit-vector for up to 128 bits,

• include real probabilities for transitions and emissions, due to a lack of training data, but it also
doesn’t prevent inclusion of such probabilities,

• include disambiguation or relevance metric for the generated output.

This architecture does:

• allow for arbitrary individual feature definitions that can be mapped on bit-vectors,

• allow for the extension of the morphological base and rule set without having to touch the
program code, and with a turnaround time of 3 to 5 minutes (recompilation),

FSA Architecture

The Finite State Automaton is formally a variant of a Mealy (Mealy, 1955) or a Moore machine
(Black, 2004).

It is composed of non-cyclic Deterministic Finite State Automata (DFSA), as shown for example
for verbal roots, prefixes and suffixes in the following graphs:

0

1
č

p

5š
v root (-index

2
i
e 3t 4a v root )-index

0

1n

3p
v pref (-index

2a

4o

v pref )-index asp

v pref )-index asp

0

2m

3š

1ε

4
t

6

j

v suf (-index

8o

v suf )-index pres 1st sg

v suf )-index pres 2st sg

v suf )-index pres 3rd sg

5e

v suf )-index 2nd sg imper

7

u

v suf )-index pres 1st pl

v suf )-index pres 2nd pl

v suf )-index pres 3rd pl

For each DFSA there is one emission associated with leaving its initial state, and one with reach-
ing its final state. Each emission consists 1 to n feature sets, encoded in a binary bit-vector.

Ambiguity is mapped on multiple emissions, keeping the machine deterministic.

Rule-based composition of these DFSAs, based recursive rules for concatenation and alignment,
can result in cyclic-automata:

0 3p

1

n

5
ε

v pref (-index

4o

2
a

ε 6
č

p

8š
v root (-index

ε

v pref )-index asp

ε

v pref )-index asp

7
i
e 9t 10a

v root )-index

11
ε

13m

14š

12ε

15

t

17

j

v suf (-index

19
o

v suf )-index pres 1st sg

v suf )-index pres 2st sg

v suf )-index pres 3rd sg

16e

v suf )-index 2nd sg imper 18u

v suf )-index pres 1st pl

v suf )-index pres 2nd pl

v suf )-index pres 3rd pl

Summary

CroMo is a FSA-based morphological segmentation, annotation, and lemmatization automaton,
that allows for merging of three major functionalities into one highly efficient monolithic FSA,
similar to TAGH (Geyken and Hanneforth, 2005). It is designed to be flexible, extensible, and
applicable to any language that allows for purely morphotactic modeling at the lexical level. Its
code-base is C and C++ for the final machine, and Python and Scheme for data-pre-processing
and code-generation. Its language models are character code independent, processing any code-
page or Unicode encoding schema.

CroMo is designed as a Minimally Invasive system. Lexicologists and Linguists use classical and
common computational data annotation and collection environments. CroMo generates code and
binaries seamlessly, using common data formats (e.g. spreadsheets), minimizing the introduction
of complex processes or learning of formal specification languages and digital formats for the
developer or user.

CroMo uses an annotation schema (in an initial Croatian language model) that is directly mapped
from the General Ontology for Linguistic Description (GOLD) (Farrar and Langendoen, 2003).
The feature hierarchy and concept taxonomy in GOLD is mapped on an efficient and compact bit-
vector representation, minimizing size and maximizing annotation performance. The ontology-
based annotations increase the potential for interoperability, but also opens up advanced possibil-
ities for a Description Logic-based post-processing and analysis.

Damir Ćavar1, Ivo-Pavao Jazbec2, Tomislav Stojanov2

1: Linguistics Department, University of Zadar
2: Institute of Croatian Language and Linguistics, Zagreb

CroMo - Morphological Analysis for Croatian

http://personal.unizd.hr/~dcavar/CroMo/

