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Abstract 
In this paper we describe a machine learning method tailored to overcome the difficulty of selecting and putting together translated 
segments in the Verbmobil system. We use off line human feedback to determine an optimized confidence rescaling scheme for the 
confidence values provided by four independent and competing translation paths in Verbmobil.  
 

1. Introduction  
Within the machine translation system Verbmobil 

(Wahlster, 1993), translations of spoken input are 
performed simultaneously in four independent translation 
paths. Each translation path implements a completely 
different MT strategy. The different translation paths 
incrementally generate translation segments that are 
combined to one output translation by a selection 
procedure. The task of the selection procedure is to find 
the best translation of the single segments and generate a 
translation output, which is the optimal set of translated 
segments. 

The selection procedure relies on confidence values 
that are delivered together with the translated segments 
from each of the alternative translation components. Since 
the confidence values are computed by independent 
components that are based on fundamentally different MT 
strategies, they are not directly comparable, neither with 
each other, nor with the objective judgments of human 
evaluators, i.e. they need to be rescaled in order to gain 
comparative significance. In this paper, we describe the 
strategy we have explored in order to acquire the 
necessary human annotations of the translation quality, 
that are used as the bootstrapping data for an optimized 
confidence rescaling schema. 

For our purpose, the results from human evaluation are 
the key data. In order to guarantee maximal reliability we 
make use of different strategies developed and used for 
example in experimental psychology. The annotation task 
itself has to be designed in a way to resolve optimally the 
tension between the need to be maximally easy for the 
evaluators (low time resources, low cognitive effort) and 
maximally reliable and usable for the developers. The 
tasks for the evaluator were set up to consist of the 
following primitives: a. simple reading task, b. binary 
decision task, c. simple counting task, and the possibility 
to make notes. As is well known from experimental 
psychology and psycholinguistics, simple binary decision 
tasks (e.g. yes/no questions), for example, are answered 
much faster, and more reliably across items and across 
subjects by the evaluators than decision tasks that provide 
a decision scale. Counting tasks are used, both, to generate 
relevant annotated data (e.g. the number of relevant 
information units), and to provide automatic means for 
checking the evaluators reliability, given that some 
counting tasks can be performed automatically. The 
evaluator, for example, is randomly asked to count the 
number of words in either the input or the output, and the 

instructor explains that this is relevant for the evaluation. 
The number of mistakes the evaluator makes can be used 
to relativize the other evaluation results automatically. 
Such evaluation strategies and precise instructions, as we 
experienced, give very robust results. 

Based on this evaluation, a set of ‘off line’ confidence 
values is calculated, and a list of alternative segment 
combinations is produced, sorted according to their 
corresponding off line confidence values. The annotators 
then process these lists in a second annotation phase, in 
which they are requested to select from each list a 
minimal subset of ‘best’ translations. The results of this 
second annotation round are then combined with the 
original ‘on line’ confidence values to form inequalities 
that express the annotators’ preferences as a set of 
constraints on the linear rescaling coefficients. 
 
 

2. The Various Translation Paths 
The Verbmobil system includes four independent 

translations paths that operate in parallel. The input shared 
by all paths consists of sequences of annotated Word 
Hypotheses Graphs (WHG). Each WHG is produced by a 
speaker independent voice recognition module, and is 
annotated with additional prosodic information and pause 
information by a prosody module (Buckow et al, 1998). In 
principle, every translation subsystem chooses 
independently a path through the WHG, and a possible 
segmentation according to its grammar and to the prosody 
module information. This implies that even though all 
translation paths are sharing the same input data structure, 
both the chosen input string and its chosen segmentation 
may well be different for each path. In this section we 
provide the reader with very brief descriptions of the 
different translation subsystems, along with their 
respective methods for calculating confidence values. 

 
The ali subsystem implements an example based 

translation approach. Confidence values are calculated 
according to the matching-level of the input string with its 
counterparts in the database. 

 
The stattrans (Och et al, 1999) subsystem is a 

statistical translation system. Confidence values are 
calculated according to a statistical language model of the 
target language, in conjunction with a statistical 
translation model. 

 



The syndialog (Kipp et al, 1999) subsystem is a 
dialogue act based translation system. Here the translation 
invariant consists of a recognized dialogue act, together 
with its extracted propositional content. The confidence 
value reflects the probability that the dialogue act was 
recognized correctly, together with the extent to which the 
propositional content was successfully extracted. 

 
The deep translation path in itself consists of multiple 

pipelined modules: linguistic analysis, semantic 
construction, dialogue and discourse semantics, and 
transfer (Emele et al, 1996) and generation (Kilger et al, 
1995) components. The transfer module is supported with 
disambiguation information by the context (Koch et al, 
2000) and dialogue modules. The linguistic analysis part 
consists of several parsers which, in turn, also operate in 
parallel (Ruland et al, 1998). They include an HPSG 
parser, a Chunk Parser and a statistical parser, all 
producing data structures of the same kind, namely, the 
Verbmobil Interface Terms (VITs) (Dorna, 1999). Thus, 
within the deep processing path, a selection problem 
arises, similar to the larger scale problem of selecting the 
best translation. This internal selection process within the 
deep path is based on a probabilistic VIT model. 
Confidence values within the deep path are computed 
according to the amount of coverage of the input string by 
the selected parse, and are subject to modifications as a 
byproduct of combining and repairing rules that operate 
within the semantics mechanism. Another source of 
information which is used for calculating the ‘deep’ 
confidence values is the generation module, which 
estimates the percentage of each transferred VIT which 
can be successfully realized in the target language. 

Although all confidence values are finally scaled to the 
interval [0,100] by their respective generating modules, 
there seems to be hardly any reason to believe that such 
fundamentally different calculation methods would yield 
magnitudes that are directly comparable with one another. 
As expected, our experience has shown that when 
confidence values are taken as such, without any further 
modification, their comparative significance is indeed 
very limited. 
 

3. The Selection Procedure 
For the language pairs English-German and German-

English, Verbmobil applies four different translation 
methods that operate in parallel, according to four 
alternative approaches to machine translation, thus 
increasing the system's robustness and versatility. Since 
the system should always produce exactly one translation 
for each input utterance that it encounters, a selection 
procedure is necessary, which would choose the best 
alternative for each given utterance. 

In order to benefit more from this diversity of 
translation methods, the alternative translations are 
furthermore combined  within the boundaries of single 
utterances, so as to form a new compound translation. 

Each translation module calculates a confidence value 
for each of the translations that it produces, to serve as a 
guiding criterion for the selection procedure. However, 
since the various translation methods are fundamentally 
different from one another, the resulting confidence values 
cannot be compared per se. Whereas we do assume a 

general correspondence between confidence values and 
translation quality within each one of the modules, there is 
no guaranty whatsoever that a high value delivered by a 
certain module would indeed signify a better translation 
when compared with another value, even a much lower 
one, which was delivered by another module. An 
additional step needs to be taken in order to make the 
confidence values comparable with one another. 
     An important presupposition that has been adopted 
throughout the current work is that the desirable rescaling 
can be well approximated by means of linear polynomials. 
The computational benefits of this assumption are 
immense, as it allows us to remain within the relatively 
friendly realm of linear equations (albeit inconsistent). 
The price that we have to pay in terms of precision is not 
as big as one might expect, because the crucial matter to 
our case is the comparative behavior of the obtained 
confidence curves, i.e. the breakpoints in which one 
overtakes the other, rather than the precise details of their 
behavior in between. 

Once the rescaling coefficients have been determined 
by the learning procedure, the selection procedure can be 
performed as follows: for each given utterance, all 
possible translated segment sequences that combine to a 
full translation are generated. Their respective normalized 
confidence values are then calculated by applying the 
linear rescaling coefficients, and then integrating with 
respect to the time axis, in order to favor sequences with 
better source utterance coverage. The best sequence can 
then be chosen according to the normalized confidence 
values. It should be noted that not all sequences need to be 
actually generated and tested, due to the incorporation of 
Dijkstra's well known “Shortest Path” algorithm (e.g. in 
Cormen et al 1989).  
 

4. The Learning Procedure 
Learning the rescaling coefficients is performed off 

line, and should normally take place only once, unless 
new training data is assembled, or new criteria for the 
desirable system behavior have been formulated. The 
learning cycle consists of incorporating human feedback 
(training set annotation) and finding a set of rescaling 
coefficients so as to yield a selection procedure with 
optimal or close to optimal accord with the human 
annotations. The first step in the learning procedure is 
choosing the set of training data. This choice has a direct 
influence on the learning's result, and, of course, on the 
amount of time and resources that it requires. In the course 
of our work we've performed this procedure several times, 
with training sets of various sizes, all taken from a corpus 
of test dialogues, designed to provide a reasonable 
coverage of the desirable functionality of the current 
Verbmobil version. 

Since the optimization algorithm (described below) 
normally terminates within no more than a couple of 
hours, the main bottle neck in terms of time consumption 
have normally been the human annotators. With what 
appears to be, from our experience, a reasonably large 
training set, i.e. a set of 7 from the above mentioned test 
dialogues (including 240 dialogue turns and 1980 different 
segments), the complete learning cycle can be performed 
within a few days, depending on the annotators' diligence, 
of course. Once a training set has been determined, it is 



first fed through the system, while separately storing the 
outputs produced by the various translation modules.  

The system’s output is then subject to two phases of 
annotation, resulting in a uniquely determined b̀est' 
sequence of translated segments for each input utterance. 
The next task is to learn the appropriate linear rescaling, 
that would maximize the accord between the new, 
rescaled confidence values, and the preferences dictated 
by the newly given ‘best’ sequences. In order to do that, 
we first generate a large set of inequalities, and then 
obtain their optimal, or close to optimal solution. 

The two annotation phases can be described as 
follows: first, the outputs of the alternative translations 
paths are annotated separately, so as to enable the 
calculation of the ‘off line confidence values’ as described 
below. For each dialogue turn, all possible combinations 
of translated segments that cover the input are then 
generated. For each of those possible combinations, an 
overall off line confidence value is calculated, in a similar 
way to which the ‘online’ confidence is calculated, 
leaving out the rescaling coefficients, but keeping the time 
axis integration. 

These segment combinations are then presented to the 
annotators for a second round, sorted according to their 
respective off line confidence values. The annotator is 
requested at this stage merely to select the best segment 
combination, which would normally be one of the first to 
appear on the list. 

The first annotation stage may be described as ‘theory 
assisted annotation’, and the second is its more intuitive 
complement. To assist the first annotation round we have 
compiled a set of annotation criteria, and designed a 
specialized annotation tool for their application. 

These criteria direct the annotator’s attention to 
‘essential information items’, and refer to the number of 
such items that have been deleted, inserted or maintained 
during the translation. Other criteria are the semantic and 
syntactic correctness of the translated utterance as well as 
those of the source utterance. The separate annotation of 
these criteria allows us to express the ‘off line confidence’ 
as their weighted linear combination. The different 
weights can be seen as implicitly establishing a method of 
quantifying translation quality. One can determine, for 
instance, which is of higher importance – syntactical 
correctness, or the transmission of all essential 
information items. Using the vague notion of ‘translation 
quality’ as a single criterion would have definitely caused 
a great divergence in personal annotation style and 
preferences, as can be very well exemplified by the case 
of the dialogue act based translation: some people find 
word by word correctness of a translation much more  
important than the dialogue act invariance, while others 
argue exactly the opposite (Schmitz, 1997), (Schmitz et al, 
1995). 

Once the best segment sequences for each utterance 
have been determined by the completed annotation 
procedure, a set of inequalities is created using the linear 
rescaling coefficients as variables. This is done simply by 
stating the requirement that the normalized confidence 
value of the best segment sequence should be better than 
the normalized confidence values of each one of the other 
possible sequences. For each utterance with n possible 
segment sequences, this requirement is expressed by (n-1) 
inequalities. 

It is worth mentioning at this point that it sometimes 
occurs during the second annotation phase, that numerous 
sequences relating to the same utterance are considered 
‘equally best’ by the annotator. In such cases, when not all 
sequences are concerned but only a subset of all possible 
sequences, we have allowed the annotator to select 
multiple sequences as ‘best’, correspondingly multiplying 
the number of inequalities that are introduced by the 
utterance in question. These multiple sets are known in 
advance to be inconsistent, as they in fact formulate 
contradictory requirements. Since the optimisation 
procedure attempts to satisfy the largest possible subset of 
inequalities, the logical relation between such 
contradicting sets can be seen as disjunction rather than 
conjunction, and they do seem to contribute to the 
learning process, because the different ‘equally best’ 
sequences are still favoured in comparison to all other 
sequences relating to the same utterance. 

The overall resulting set of inequalities is normally 
very large, and can be expected to be consistent only in a 
very idealized world, even in the absence of ‘equally best’ 
annotations. The inconsistencies reflect many 
imperfections that characterize both the problem at hand 
and the long way to its solution, most outstanding of 
which is the fact that the original confidence values, as 
useful as they may be, are nevertheless far from reflecting 
the human annotation and evaluation results, which are, 
furthermore, not always consistent among themselves.  

The rest of the learning process consists in trying to 
satisfy as many inequalities as possible without reaching a 
contradiction. 

The problem of finding the best rescaling coefficients 
reduces itself, under the above mentioned presuppositions, 
to that of finding the maximal consistent subset of 
inequalities within a larger, most likely inconsistent, set of 
linear inequalities, and solving it. In (Amaldi et al, 1997), 
the problem of extracting close-to-maximum consistent 
subsystems from an inconsistent linear system (MAX CS) 
is treated as part of a strategy for solving the problem of 
partitioning an inconsistent linear system into a minimal 
number of consistent subsystems (MIN PCS). 

Both problems are NP-hard, but through a thermal 
variation of previous work by (Agmon, 1954) and 
(Motzkin et al, 1954), a greedy algorithm is formulated by 
(Amaldi et al 1997), which can serve as an effective 
heuristic for obtaining optimal or near to optimal solutions 
for MAX CS. Implementing this algorithm in the C 
language enabled us to complete the learning cycle by 
finding a set of coefficients that maximizes, or at least 
nearly maximizes, the accord of the rescaled confidence 
values with the judgment provided by human annotators. 

 

5. Conclusion 
 
We have described certain difficulties that arise during 

the attempt to integrate multiple alternative translation 
paths and to choose their optimal combination into one 
‘best’ translation. Using confidence values that originate 
from different translation modules as our basic selection 
criteria, we have introduced a learning method which 
enables us to perform the selection in close to maximal 
accord with decisions taken by human annotators. Along 
the way, we have also tackled the problematic aspects of 



translation evaluation as such, and described some 
additional sources of information that are used within our 
selection module. The extent to which this module 
succeeds in creating higher quality compound translations 
is of course highly dependent on the appropriate 
assignment of confidence values, which is performed by 
the various translation modules themselves. 

Despite the relative simplicity of the methods that are 
currently being used by these modules for confidence 
calculation as such, applying our approach within the 
Verbmobil system has already yielded a significant 
improvement. The most recent Verbmobil evaluation 
results demonstrate this improvement very clearly. The 
evaluation is based on annotating five alternative 
translations for a chosen set of dialogue-turns. The 
translations provided by the four single translation paths, 
and the combined translation delivered by the selection 
module, were all marked by the annotators as ‘good’, 
‘intermediate’, or ‘bad’. Judged by the percentage of 
‘good’ turns from the overall number of annotated turns, 
the selection module shows an improvement of 27.8% 
compared to the best result achieved by any single 
module. 

 

6. References 
 
Agmon S., 1954. The relaxation method for linear 

inequalities Canadian Journal of Mathematics, 6:382-
392. 

 
Amaldi E., Mattavelli M., 1997. A combinatorical 

optimization approach to extract piecewise linear 
structure from nonlinear data and an application to 
optical flow segmentation TR 97-12, Cornell 
Computational Optimization Project, Cornell 
University, Ithaca NY, USA. 

 
Buckow J., Batliner A., Gallwitz F., Huber R., Nöth E., 

Warnke V., and Niemann H., 1998. Dovetailing of 
Acoustics and Prosody in Spontaneous Speech 
Recognition Proc. Int. Conf. on Spoken Language 
Processing, volume 3, pages 571-574, Sydney, 
Australia.  

 
Cormen T., Leiserson C., Rivet L., 1989. Introduction to 

Algorithms MIT Press, Cambridge, Massachusetts. 
 
Dorna M., 1999. The ADT Package for the Verbmobil 

Interface Term Universität Stuttgart. Verbmobil Report 
104X.  

 
Emele M., Dorna M., 1996. Efficient Implementation of a 

Semantic-based Transfer Approach Proceedings of the 
12th European Conference on Artificial Intelligence 
(ECAI-96). 

 
Kilger A., Finkler W., 1995. Incremental Generation for 

Real-Time Applications DFKI Report RR-95-11, 
German Research Center for Artificial Intelligence - 
DFKI GmbH. 

 
Kipp M., Alexandersson J., Reithinger N., 1999. 

Understanding Spontaneous Negotiation Dialogue 

Proceedings of the IJCAI Workshop Knowledge and 
Reasoning in Practical Dialogue Systems, Stockholm, 
Sweden 

 
Koch S., Küssner U., Stede M., Tidhar D., 2000. 

Contextual reasoning in speech-to-speech translation 
Proceedings of 2nd International Conference on 
Natural Language Processing NLP2000, Springer 
LNAI. 

 
Motzkin T.S., Schoenberg I.J., 1954. The relaxation 

method for linear inequalities Canadian Journal of 
Mathematics, 6:393-404. 

 
Och F.J., Tillmann C., Ney H., 1999. Improved Alignment    

models for Statistical Machine Translation Proc. of the 
Joint SIGDAT Conf. on Empirical Methods in Natural 
Language Processing and Very Large Corpora, 
University of Maryland. 

 
Ruland T., Rupp C.J., Spilker J., Weber H., Worm C, 

1998.. Making the Most of Multiplicity: A Multi-Parser 
Multi-Strategy Architecture for the Robust Processing 
of Spoken Language Proceedings of ICSLP.  

 
Schmitz B., 1997. Pragmatikbasiertes Maschinelles 

Dolmetschen. Dissertation, FB Informatik, TU  Berlin. 
 
Schmitz B., Quantz J.J., 1995. Dialogue Acts in 

Automatic Dialogue Interpreting Proceedings of the 
Sixth International Conference on Theoretical and 
Methodological Issues in Machine Translation (TMI-
95), Leuven. 

 
Wahlster W., 1993. Verbmobil: Translation of face-to-

face dialogues. Proceedings of the Third European 
Conference of Speech Communication and Technology, 
Berlin. 

 
 
 
 


