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Abstract 
 
This dissertation has two objectives. The first is to present the formal foundations of a 

cue-based model of distributional learning and show how it can be used in learning 

subcategorization frames. The other more general objective is to give further evidence 

that the input plays a central role in both automatic and human language acquisition. Two 

implementations of this model are presented. The first comprises a set of learning 

algorithms that are able to identify arguments, predicates, and subcategorization. This 

implementation uses as bootstraps proper names and a small subset of pronouns. The 

other implementation does not assume any initial cues. Learning in this implementation is 

based only on distributional regularities in the input and the information-theoretic 

measure of Mutual Information. It presents a procedure for cue extraction, then 

demonstrates how these cues can be used in categorization and subcategorization. The 

efficiency of the proposed cue-based model as applied in this implementation is tested on 

English, German, and Japanese. The performance of the two implementations shows that 

the model is able to capture language-specific properties based on distributional 

regularities in the input. The theoretical and practical importance of the cue-based model 

proposed in this dissertation stems from three main reasons. The first is the need in NLP 

to acquire maximum lexical and structural knowledge from minimum or zero initial 

knowledge. The second is the evidence it provides for the possibility of natural language 

acquisition using a small set of cues in the input by means of distributional analysis. 

Finally, this model is language-independent, which makes it extendible to other linguistic 

learning tasks and other languages with little parameterization.  
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Chapter  1 

Background and Motivations 

Automatic acquisition of lexical knowledge is a major bottleneck in the production of 

high-coverage grammars and parsers (Zernik 1991, Manning 1993, Briscoe & Carroll 

1993, 1997). Especially important is knowledge about verbs, which are the primary 

source of relational information in a sentence. The lexical representation of a verb should 

specify at least one subcategorization frame that generally represents the number, type, 

and syntactic realization of arguments corresponding to the participants in the event 

described by the verb.( A more formal definition of frames is given in Chapter 5). 

According to Briscoe and Carroll (1993) and Carroll and Rooth (1998), up to 50% 

of the parse failures on unseen test data were caused either by the inaccuracy or the lack 

of subcategorization information in the dictionary used by the parser. A parser equipped 

with this type of information is able to recover the correct predicate-argument relations, 

which helps the parser to constrain the number of analyses and the space of possible 

parses for a given structure (Manning 1993). Subcategorization information is also 

essential in a number of theoretical as well as practical problems in parsing and lexicon 

construction. These problems include, but are not limited to, PP-attachment, complement-

adjunct distinction, and the variation in predicates’  argument-taking properties across 

time and discourse. 

For example, an English parser equipped with the subcategorization frames in 

Table 1 is able to determine the legitimate PP-attachment in the sentences below. 

Accordingly, the first and the third bracketings are legitimate analyses, whereas the 

second is not.  



 2 

(1)  I [warned [the man] [of the storm]]. 

(2)  * I [repaired [the motor] [of the car]]. 

(3) I [repaired [the motor [of the car]]]. 

 
 

Frame Structure Example 

Intransitive 0 The woman walked. 

Transitive NP[obj] John loves Mary. 

Ditransitive NP[direct_obj] NP[indirect_obj]  Mary gave Peter flowers. 

Intransitive with PP PP I rent in Paddington. 

Transitive with PP NP[obj] PP She put the book on the table.  

Sentential complement Clause I know (that) she likes you. 

Transitive with sentential complement NP[obj] Clause She told me he is coming. 

 
Table 1: Some English subcategorization frames (Manning and Schütze 2003: 105) 

  
When parsing without subcategorization information we are not only confronted 

with the attachment problem, but also with the problem of distinguishing complements 

from adjuncts. Adjuncts are usually not mandated by the verb’s syntactic or semantic 

requirements; they rather provide optional additional, contextual or background 

information. The following sentence illustrates some typical adjuncts (temporal, locative, 

manner and reason). 

(4)  I repaired the car (today /in the backyard /with pleasure /because I had to).  

Whereas the number and type of complements is specific to each verb, adjuncts 

can (in theory) appear with all verbs subject only to semantic compatibility constraints. 

Complements and adjuncts can look very similar:  

(5)  She has been waiting for two friends (complement). 

(6) She has been waiting for two hours (adjunct).  
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And not in all cases is the boundary between complements and adjuncts clear-cut. A 

notoriously difficult case arises with verbs whose function is to mainly focus on any of 

the above-mentioned contextual information, as illustrated by (7-9). 

 (7) He lives in Cairo. 

 (8) The good weather lasted for a week. 

 (9) She behaved well. 

There are various syntactic and semantic criteria for the complement-adjunct 

distinction, and in some cases their predictions conflict.1 For example, Meyers et al. 

(1994) propose some criteria for complement- and adjuncthood, as given in Tables 2 and 

3, respectively.2 It is not hard to realize the problems with most of these criteria. 

However, as far as this dissertation is concerned, there are two main types of problems.  

The first problem is that these criteria are based on vague and problematic 

concepts. Especially controversial is the concept of thematic role. There is so little 

agreement as to its nature and definition, and a notable absence of consensus about what 

thematic roles are (e.g., Dowty 1991: 547, Jackendoff 1987: 371). Without a formal 

definition, there is no significant purpose for thematic roles to serve (Dowty 1991: 548).3 

The other is the amount of information these criteria assume. For these criteria to 

work, the learner should have knowledge of phrases, theta roles, and selection 

restrictions, among other things. This means that the learner should be able to parse the 

input structures in order to distinguish complements and adjuncts. It is argued later that 

these and other criteria that assume similar knowledge to work suffer from a 

bootstrapping paradox.  

                                                   
1 This point is discussed in more detail in the following chapter. 
2 XP in these tables refers to maximal projections or phrases in the generative literature. 
3 For detailed discussion of thematic roles and their status in linguistic theory see Dowty (1991), Jackendoff  
(1987), and references mentioned there. 



 4 

 
1 

 
Obligator iness 

 
XP is obligatory for VP to be grammatical or for a 
particular sense of V to be possible.  
Ex. Mary felled the tree.*  Mary felled. 

 
2 

 
Passive 

 
XP can only be the subject of the passive if XP is a 
complement.  
Ex. Mary ate the cake. The cake was eaten by Mary. 
Only complement PPs can be stranded by pseudo passive. 
Ex. Many people lived in that mansion. 
This mansion was lived in by many people. 

 
3 

 
Theta Roles 

 
XP has an argument theta role: theme, source, goal, etc… 
Ex. John gave Mary (recipient, goal) the book (theme) . 

 
4 

 
Implied Meaning 

 
XP is optional, it is implied if omitted. 
Ex. John ate [ something]  
John ate. 

 
5 

 
Selection Restr ictions 

 
If V imposes selection restrictions on XP, XP is 
complement. 
 

 
Table 2: Criteria for complementhood, Meyers et al. (1994) 

 
1 

 
Frequency 

 
XP occurs with most verbs with roughly the same 
frequency and meaning. 

 
2 

 
Typical Adjuncts 

 
Purpose clauses, PPs/AdvPs/Subordinate clauses headed 
by ‘before’, ‘after’ , ‘while’ , ‘because’, etc… 

 
3 

 
Selection Restr ictions 

 
An adjunct does not impose selection restrictions on the 
verb/VP. 

 
4 

 
WH words 

 
AdvPs/PPs which can be questioned with ‘why’  or ‘how’ . 

 
5 

 
Fronting 

 
Adjunct PPs front more naturally than complement PPs. 

 
6 

 
I sland Constraints 

 
Adjuncts cannot usually violate ‘ island constraints’ 4. 
 

 
Table 3: Criteria for adjuncthood, Meyers et al. (1994) 

                                                   
4 An island in generative grammar refers to a structure out of which constituents cannot be moved by any 
movement rule. 



 5 

It has also been shown that predicates change behavior between sub-languages, 

domains and across time (Korhonen 1997; Roland and Jurafsky 1998). In a series of 

corpus-based experiments, Roland and Jurafsky (1998) showed that subcategorization 

frequency variation is caused by factors including discourse cohesion effects of natural 

corpora, the effects of different genres on verb sense, and the effect of verb sense on 

subcategorization. For example, they found that in clear cases of polysemy, such as 

accuse and bill senses of charge, each sense has a different set of subcategorization 

probabilities. In a series of psycholinguistic experiments, Hare et al. (2003) reported 

similar results on the effects of sense and discourse on subcategorization variation.  

Given this variation in the predicate’s frame behavior, it is therefore obvious that 

frames are indispensable for efficient parsing. A grammar used for parsing must have 

access to an accurate and comprehensive dictionary encoding (at the very minimum) the 

number and category of a predicate’s arguments. 

Several large machine-readable subcategorization dictionaries are already 

available for English. Some typical examples of these are the ANLT dictionary 

(Boguraev et al. 1987) and COMLEX Syntax dictionary (Grishman et al. 1994). 

However, these dictionaries are built either manually or largely automatically from 

machine-readable versions of conventional dictionaries. Manual development of large 

subcategorization dictionaries has proved inefficient in compiling fully accurate or 

comprehensive lexicons. 

According to Briscoe & Carroll (1997), the close connection between sense and 

subcategorization and between subject domain and sense makes it unlikely that a fully 

accurate static subcategorization dictionary of a language is attainable in any case. 
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Moreover, given that predicates change behavior between sub-languages, domains and 

across time, dictionaries produced by hand always lag real language use. 

What is needed then is a general method for the automatic extraction of 

subcategorization information from corpora of unrestricted texts. A subcategorization 

dictionary obtained automatically from corpora can be updated quickly and easily as 

different usages develop.  

Several methods have been suggested for learning subcategorization frames 

automatically from text corpora for English (e.g., Brent 1993), Manning (1993), Ushioda 

et al. (1996), Briscoe & Carroll (1997), Korhonen (1997), and Buchholz (1998).5 Though 

the majority of these methods were originally concerned with practical problems in 

computational linguistics, they have raised fundamental theoretical as well as practical 

issues regarding (i) the role of the input in learning, (ii) the nature of categorization and 

subcategorization frames, and (iii) learning procedures.  

While much previous theoretical research has been limited to highly idealized 

arti ficial input or to a priori considerations regarding the feasibility of acquisition 

mechanisms, these methods are mainly corpus-driven and consequently focus on the 

distributional regularities in the input as the main source of linguistic information. These 

methods could thus provide a source of hypotheses for experimental test (Redington & 

Chater 1997).  

                                                   
5 For frame identification in other languages, see Zeman and Sarkar (2000) for Czech; Maragoudakis et al. 
(2000) for Modern Greek; Basili et al. (1997) for Italian; Eckle et al. (1996) for German; and Kawahara et 
al. (2000) for Japanese. 
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Seen in this wider perspective, the input-driven mechanisms employed in these 

methods could be more empirically and theoretically rigorous if they are improved in 

three aspects.  

The first is that these methods did not entertain any formal definitions of frames, 

and consequently assumed arbitrary and subjective characterizations of these frames. 

This lack of formalization would definitely result in inconsistent and relatively non-

standardized frame and consequently lexical knowledge. Accordingly, frames are 

formally defined in Chapter 5. 

The second is that these strategies assumed a PoS-tagged or partially parsed input, 

with the exception of Brent’s strategy which leveraged minimal initial knowledge in the 

form of function words and proper names. That is, the learning algorithm is given PoS 

and structural knowledge in order to extract subcategorization information which will 

then be used in parsing, and sometimes in categorization. Assuming for now that 

bootstrapping is attaining new knowledge on the basis of already existing knowledge, 

these previous methods result in a bootstrapping paradox. This point is discussed in more 

detail in the following chapter. 

Though the most promising of these methods, Brent’s method, on the other hand, 

could be improved in two different ways. Brent does not introduce a formal definition of 

cues, nor does he show how cues could be learned. Moreover, the frame cues suggested 

by Brent are English-specific, and  will have to be learned by the algorithm to begin with. 

In order for these and future input-driven methods to be of more empirical, 

theoretical, as well as practical value, they should be based on well-defined learning 
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mechanisms that have two main properties, that is, language-independence and minimal 

or no a priori knowledge. This is what this dissertation is presenting. 

This dissertation has two interrelated objectives. The first is to present the formal 

foundations of a model of cue-based distributional learning. This model introduces 

formal definitions of cues and frames. Assuming minimal initial knowledge, this model 

demonstrates how these definitions can be used in procedures for learning these cues 

from corpora and how these cues can be used as bootstraps for learning frames, among 

other things.  

The other more general objective is to give further evidence that the input plays a 

central role in both automatic and human language acquisition. Given what can be 

learned using the proposed cue-based model based only on distributional regularities in a 

given corpus, it is shown that the input contains a set of features that would facilitate 

human/automatic language acquisition. Two implementations of this model are presented 

to show how it can be used in lexical acquisition, in general, and frame identification, in 

particular. 

The first implementation comprises a set of learning algorithms that are able to 

identify arguments, predicates, and subcategorization frames, among other things, via 

bootstrapping mechanisms. This implementation assumes a minimal set of bootstraps that 

are limited to proper names and a small subset of pronouns. These elements were chosen 

based on their logical priority to predicates and their referential nature which would 

facilitate their identification in the input, and enhance their bootstrapping power. 

Bootstrapping in this implementation is based on two main assumptions. The first 

assumption is that the similarity of two or more elements is a function of the similarity of 
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their contexts (Harris, 1951). The second assumption is that two or more elements are 

distributionally similar if they share more than 50% of their contexts. The results reported 

for this implementation are based on an English corpus. Testing the efficiency of this 

implementation of the model with other languages still requires further research.  

The other implementation does not assume any initial cues or linguistic 

knowledge. Rather, using distributional regularities and the information-theoretic 

measure of Mutual Information, it presents a strategy for learning cues first and then 

using them in categorization and subcategorization. The Mutual Information statistic is 

used to measure how much information a given context carries about a certain element, 

and is expected to yield a more accurate measure of distributional similarity than the 

relative-frequency measure used in the first implementation.  

The efficiency of the proposed cue-based model as applied in this implementation 

was tested on three languages: English, German, and Japanese. The model was able to 

capture language-specific properties using only distributional regularities in the input. To 

establish the language-independent nature of the model as manifested in this 

implementation still requires further research to test it on other languages. 

Both implementations assume no predefined subset of frames, since the learning 

algorithms are left to identify the set of possible frames, and what is an appropriate frame 

for a verb based on distributional regularities in the input.  

The theoretical and practical importance of the cue-based model proposed in this 

dissertation stems from three main reasons. The first is the need in NLP to acquire 

maximum lexical and structural knowledge given minimal or no a priori knowledge. The 

second is the evidence it provides for the possibility of natural language acquisition using 
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a small set of cues in the input by means of distributional analysis. Finally, this model is 

language-independent, which makes it extendible to other linguistic learning tasks and 

other languages with little parameterization.  

The dissertation is organized into seven chapters. Chapter 1 provides the rationale 

for this research. Chapter 2 reviews the previous methods for the automatic acquisition of 

subcategorization frames. Chapter 3 outlines the different approaches to bootstrapping 

and then discusses some problems in the previous methods in terms of bootstrapping. 

Chapter 4 surveys the psycholinguistic evidence for the language learner’s sensitivity and 

ability to use different cues in the input. Chapter 5 introduces the two foundations of a 

cue-based learning model, that is, a cue identification procedure and procedures for 

establishing distributional similarity. Chapters 6 and 7 present two implementations of 

this model. The first is a cue-based learner that bootstraps from a set of semantic cues, 

which are limited to proper names and a subset of pronouns. This implementation shows 

how the model can be used in identifying noun phrases, verbs, and frames in a given 

corpus. The other implementation is a more sophisticated version of a cue-based learner 

that bootstraps from a set of distributional cues that it learns from a given corpus. It 

shows how cues can be used to set, for example, the head parameter in three different 

languages (i.e. English, Japanese, and German). It also shows how predicates and 

arguments can be differentiated in a corpus based on cues. And finally it demonstrates 

how this knowledge augmented with knowledge about head direction can be used in 

identifying a set of possible frames in a given corpus. The last chapter concludes with an 

overall comparison of the performance of the two implementations, and their implications 

for practical and theoretical issues in computational and human language acquisition. 
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Chapter  2  

Theoretical Issues in Subcategorization Frames Learning 

In this chapter, I first review the probabilistic, as opposed to categorical, approach to verb 

subcategorization. I then present the previous methods for automatic subcategorization 

acquisition. Finally, I discuss the implications of these strategies both for automatic and 

human language acquisition.  

2.1 Models of Subcategorization Frames 

It was briefly mentioned in the previous chapter that, in order to assemble 

accurate subcategorization information, a distinction should be made between 

complements and adjuncts. This distinction between complements and adjuncts 

combining with a head is essential in almost all current formal theories of grammar (e.g. 

the Minimalist Program (Chomsky 1995), Lexical-Functional Grammar (Bresnan 2001), 

Head-Driven Phrase Structure Grammar (Pollard and Sag 1994), Categorial Grammar 

(Morrill 1994), and Tree-Adjoining Grammar (Joshi and Schabes 1997)). According to 

these frameworks, complements are taken to be syntactically specified and required by 

the head, whereas adjuncts (of time, place, purpose, etc.) can freely modify a head, 

subject only to semantic compatibility constraints.  

According to this categorical distinction, constituents have to be either selected 

(as complements) or not. If they are not, they are freely licensed as adjuncts, which in 

theory should be able to appear with any head and to be iterated any number of times, 

subject only to semantic compatibility.  

However, categorical models of selection have always been problematic 

(Manning 2003). Many subcategorization distinctions presented in the linguistics 
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literature as categorical are actually counter-exemplified in studies of large corpora of 

written language use.  

According to Pollard and Sag (1994: 105-108, P & S, hereafter), a verb such as 

consider appears with a noun phrase object followed by various kinds of predicative 

complements (nouns, adjective, clauses, etc.), but not with as complements: 

(10) a. We consider Kim to be an acceptable candidate. 

b. We consider Kim an acceptable candidate. 

c. We consider Kim quite acceptable. 

d. We consider Kim among the most acceptable candidates. 

e. *We consider Kim as an acceptable candidate. 

f. *We consider Kim as quite acceptable. 

g. *We consider Kim as among the most acceptable candidates. 

h. ?*We consider Kim as being among the most acceptable 

candidates. 

However, this lack of as complements is counter-exemplified by examples from the New 

York Times corpus in the Linguistic Data Consortium (cited in Manning 2003: 299): 

(11) a. The boys consider her as family and she participates in everything  

we do. 

b. Greenspan said, “ I don’t consider it as something that gives me 

great concern.”  

c. “We consider that as part of the job,”  Keep said. 
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d. Although the Raiders missed the playoffs for the second time in 

the past three seasons, he said he considers them as having 

championship potential. 

e. Culturally, the Croats consider themselves as belonging to the 

“civilized”  West… 

Moreover, according to P & S, regard is the opposite of consider in disallowing 

VP complements, but allowing as complements: 

(12) a. *We regard Kim to be an acceptable candidate. 

b. We regard Kim as an acceptable candidate. 

But again there are examples in the New York Times where regard appears with an 

infinitival VP complement: 

(13) a. As 70 and 80 percent of the cost of blood tests, like prescriptions,  

is paid for by the state, neither physicians nor patients regard 

expense to be a consideration. 

b. Conservatives argue that the Bible regards homosexuality to be a 

sin. 

P & S describe turn out as allowing an adjectival phrase complement but not a present 

participle VP complement: 

 (14) a. Kim turned out political. 

b. *Kim turned out doing all the work. 

But again counter-examples were attested in the New York Times:  

 (15) a. But it turned out having a greater impact than any of us dreamed. 
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 This conflict between the linguist’s judgments and the corpus evidence implies 

that the corpus contains structures that should not, according to the categorical model, be 

generated by the grammar in the first place.6 It could be argued that the above counter-

examples may be due to possible errors or regional or social variation. However, they 

should be accounted for by any theory of lexical knowledge, in particular, and language, 

in general. One possible solution in a categorical model is to expand the model to 

encompass the new examples. However, by doing that, we are eventually  

“ failing to capture the fact that the subcategorization frames that Pollard 

and Sag do not recognize are extremely rare, whereas the ones they give 

encompass the common subcategorization frames of the verbs in 

question” , (Manning 2003: 301). 

Accordingly, a parser based on P & S’s subcategorization information is expected to fail  

in outputting the correct parses for all of the counter-examples given above. 

What is needed then is a more relaxed model that takes into consideration the 

possible frames permitted by a given verb as well as their probabilities. Furnishing the 

parser with such information will definitely increase its efficiency and robustness.  

According to such a probabilistic model, (Manning 1993, 2003), it is not 

necessary to categorically divide verbal dependents into subcategorized arguments and 

freely occurring adjuncts. Rather, subcategorization information is represented as “a 

probability distribution over argument frames, with different verbal dependents expected 

to occur with a verb with a certain probability”  (Manning, 2003: 302). The following 

example demonstrates the dynamics of this model. 

                                                   
6 Of course, we should assume that these structures are grammatical to start with. 
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In the Oxford Advanced Learners Dictionary (Hornby, 1989), the verb retire is 

subcategorized as a simple intransitive and transitive verb, and as an intransitive verb 

taking a PP[from] or PP[to] argument. The following examples from the Wall Street 

Journal corpus in the Linguistic Data Consortium (cited in Manning 2003: 303) show the 

different contexts where retire occurs: 

(16) a. Mr. Riley plans to retire to the $1.5 million ranch he is building in  

Cody, Wyo. 

b. Mr. Frey, 64 years old, remains chairman but plans to retire from 

that post in May. 

c. To all those wishing to retire to Mexico, let me offer three 

suggestions. 

d. Donald W. Tanselle, 62 years old, will retire as vice chairman of 

this banking concern, effective Jan. 31. 

e. A worker contributing 10% of his earnings to an investment fund 

for 40 years will be able to retire on a pension equal to two thirds 

of his salary. 

While prepositional phrases headed by to or from are common with retire (16a-b)—and 

are arguably arguments by traditional criteria—this does not exhaust the list of putative 

arguments of retire. While in most often occurs with retire to specify a time point (a 

canonical adjunct PP), it sometimes expresses a destination (16c), and it seems that these 

examples demand the same treatment as the examples with PP[to]. The same applies to 

the other examples in (16d-e). 



 16 

 In a model that assumes a categorical distinction between complements and 

adjuncts, it is not clear how these cases can be accounted for. In a probabilistic model, 

this subcategorization information is instead represented as a probability distribution over 

argument frames, with different verbal dependents expected to occur with a verb with a 

certain probability. Table 4 shows the probabilities of part of the different 

subcategorization frames for the verb retire in the Wall Street Journal corpus (Manning, 

2003: 303).7 

Frame Probability 
P(NP[SUBJ]____|V = retire) 0.25 
P(NP[SUBJ]____NP[OBJ]|V = retire) 0.5 
P(NP[SUBJ]____PP[from]|V = retire) 0.04 
P(NP[SUBJ]____PP[from]PP[after]|V = retire) 0.003 
… … 

 
Table 4: Partial frame probabilities for retire (Manning 2003) 

 

These probabilities constitute part of the lexical properties of the verb, and can be 

exploited in parsing or any other task determined by the modeler. For example, Fodor 

(1978) and Connine et al. (1984) provide evidence that listeners use the probability with 

which a given verb appears in its various possible frames to guide sentence analysis. 

Moreover, MacDonald (1994) and Jurafsky (2003) have shown that the probability of 

subcategorization frames plays an on-line role in the disambiguation of various syntactic 

ambiguities. This point is discussed in more detail in Chapter 4. 

 This difference between the two models of subcategorization frames indicates a 

more fundamental difference between two approaches to language in general. The first 

approach is nativist and consequently emphasizes the role of innate linguistic knowledge, 

                                                   
7 Manning considers the probabilities of the complete frame, i.e., including the subject argument. 



 17 

with the influence of the learner’s environment playing a relatively minor role (e.g., 

Chomsky, 1965, 1981, 1986; Lightfoot, 1991). The other approach, on the other hand, is 

empirical and accentuates the role of the input in learning. It explores the utility of 

important classes of language-internal, or distributional information, derived from the 

relationships between linguistic units such as phonemes, morphemes, words, and phrases 

(e.g., Harris, 1951). This approach entertains distributional or probabilistic mechanisms, 

including connectionist networks and conventional statistics, in the discovery of structure 

in the input. 

 Regardless of the strongly-held fundamental tenets of each approach, indisputably 

some aspects of language must be learned. The first and most central of these aspects is 

vocabulary. No matter how great the contribution of innate knowledge to language 

acquisition, a nativist theory of language is required to show how this knowledge 

interacts with the input in vocabulary construction. Moreover, a principles-and-

parameters interpretation of the nativist approach is required to show how the putatively 

innate parametric knowledge is tuned (e.g., by parameter setting) to the specific 

properties of the language to be learned. 

 A distributional approach, on the other hand, is required to provide mechanisms 

for learning language from the input, based only on language-internal regularities. This 

dissertation is an attempt in this direction. 

 Two extreme views concerning the utility of distributional methods have been 

repeatedly asserted. The first is that distributional methods can learn all of the language. 

The other is that distributional methods can provide no useful information about any 

aspect of language. A more moderate view is that distributional methods are valuable in a 
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number of domains, such as word segmentation, morphology, categorization, and lexical 

semantics. However, other aspects of language (e.g., syntax and compositional 

semantics) which exhibit highly complex and structured regularities are intractable to any 

learning method, including distributional methods, and hence require the existence of 

symbolic linguistic knowledge (Chomsky, 1965). Nevertheless, the view defended by this 

dissertation is that  

“…the success of distributional methods in the limited 

aspects of language so far attacked does show that 

empirical research may produce better results than may be 

expected from considerations of linguistic theory.”  

(Redington and Chater, 1997: 2) 

Consequently, pushing distributional methods as far as possible is an important 

enterprise, which is likely to illuminate both the value of distributional information and 

the role of the input in learning. 

 For the purposes of this dissertation, this issue is discussed in terms of the issues 

involved in learning subcategorization frames from text corpora. In the following 

sections, I review some of the attempts at learning these frames through distributional 

methods. 

2.2 Previous Attempts 

Several methods have been suggested for learning subcategorization frames 

automatically from text corpora for English (e.g., Brent 1993; Manning 1993; Ushioda et 

al. 1996; Briscoe & Carroll 1997; Korhonen 1997; and Buchholz 1998). No more recent 

methods have been reported for automatic frame identification that present substantial 
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developments of the methods discussed here. Other research that has been done on frame 

identification in languages other than English is mainly based on one or more of these 

methods.8 Consequently, the methods discussed here are assumed to cover the spectrum 

of techniques available in this area, so far. 

These methods implement different learning techniques, yet they share two 

important features. The first is that they are mainly corpus-driven and consequently focus 

on the distributional regularities in the input as the main source of linguistic information. 

The other feature is that they adopt a probabilistic model of subcategorization frames.  

2.2.1 Brent 

Brent (1991, 1993, and 1994) implements a learning strategy that uses 

approximate cues in the form of function morphemes – prepositions, determiners, 

inflection, pronouns, auxiliary verbs, and complementizers – proper names, and 

punctuation, to determine syntactic structure that is necessary for frame acquisition from 

pure words.9 Using function morphemes as starting points for learning lexical syntax is 

motivated by the fact that these elements share properties that make them salient in the 

overall segmental and suprasegmental character of the language (Jakobson & Waugh 

1987; Gerken 1996; Morgan et al. 1996). Compared to content/lexical words, these words 

are typically the shortest, most common, most syntactically informative words in a 

language, and tend to occur at the beginnings and ends of phrases, thus might serve to cue 

                                                   
8 For frame identification in other languages, see Zeman and Sarkar (2000) for Czech; Maragoudakis et al. 
(2000) for Modern Greek; Basili et al. (1997) for Italian; Eckle et al. (1996) for German; and Kawahara et 
al. (2000) for Japanese. 
 
9 Like parameter-setting models (Chomsky 1981, 1986; Lightfoot 1991), Brent’s approach assumes a fixed, 
finite menu of subcategorization frames from which a lexical entry is selected for each verb. However, 
Brent is not concerned with whether this menu is innate or acquired – his only concern is that knowledge of 
the menu is independent of the mechanisms the learning algorithm uses to select from it. It is argued in this 
dissertation is that there is no predefined set of frames and that they should be learned from the input. 
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phrase boundaries (Greenberg 1963; Kimball 1973; Clark & Clark 1977; Carter & 

Gerken 1997; Shady & Gerken 1999). Such cues make it possible to discover relevant 

syntactic structure in an utterance without already knowing all the words in it.  

Brent’s approach is based on the following general principles: 

(i) Do not try to parse sentences completely. Instead, rely on local morpho-

syntactic cues such as the facts about English: (1) the word following a 

determiner is unlikely to be functioning as a verb; (2) the sequence that 

the typically indicates the beginning of a clause. 

(ii) Do not try to draw categorical conclusions about a word on the basis of 

one or a fixed number of examples. Instead, attempt to determine the 

distribution of exceptions to the expected correspondences between cues 

and syntactic frames. Use a statistical model to determine whether the 

occurrence of a verb with cues for a frame is too regular to be explained 

by randomly distributed exceptions. 

 Brent uses as input the untagged Brown Corpus. The syntactic frames targeted by 

the algorithm are shown in Table 5 (Brent, 1993). Tables 6 and 7 show the cues used for 

identifying these frames. Table 6 defines lexical categories used in Table 7. Using the 

lexical categories in Table 6, Brent builds a set of cues for identifying argument phrases. 

The phrase types for which data are reported here are noun phrases, infinitive verb 

phrases, and tensed clauses. These phrase types yield three syntactic frames with a single 

argument and three with two arguments, as shown in Table 5.  
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Table 6 
Lexical categories used in the definitions of the cues 
 
SUBJ :           I | he | she | we | they  
OBJ :             me | him | us | them  
SUBJ_OBJ :  you | it | yours | hers | ours | theirs  
DET :            a | an | the | her | his | its | my | our | their | your | this | that | whose 
+TNS :          has | have | had | am | is | are | was | were | do | does | did | can |  
could | may | might | will | would  
CC :              when | before | after | as | while | if  
PUNC :         . | ? | ! | , | ; | :  
 

 
 
 

Table 7 
Cues for syntactic frames: The category V in Table 3 starts out empty and is filled 
as verbs are detected on the first pass. “ cap”  stands for any capitalized word and 
“ cap+”  for any sequence of capitalized words 
 
Frame  Symbol  Cues 

 
 
NP only 
Tensed Clause 
 
Infinitive VP 
NP & clause 
NP & infinitive 
NP & NP (dative) 
 

 
NP 
cl 
 
inf  
NP cl 
NP inf 
NP NP 

 
(OBJ | SUBJ_OBJ | cap) (PUNC | CC) 
(that (DET | SUBJ | SUBJ_OBJ | cap+)) | 
SUBJ | (SUBJ_OBJ +TNS) 
to V  
(OBJ | SUBJ_OBJ | cap+) cl  
(OBJ | SUBJ_OBJ | cap+) inf  
(OBJ | SUBJ_OBJ | cap+) NP 
  

 
 

Table 5 
The six syntactic frames studied by Brent 

SF Description Good Example Bad Example 

NP only 
Tensed clause 
Infinitive 
NP & clause 
NP & infinitive 
NP & NP 

greet them 
hope he’ ll attend 
hope to attend 
tell him he’s a fool 
want him to attend 
tell him the story 

*arrive them 
*want he’ ll attend 
*greet to attend 
*yell him he’s a fool 
*hope him to attend 
*shout him the story 
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The cues used by the algorithm must address two problems, i.e., finding verbs in 

the input and identifying phrases that represent arguments to the verb. The algorithm 

identifies verbs in two stages, each carried out on a separate pass through the corpus. 

First, strings that sometimes occur as verbs are identified. Second, occurrences of those 

strings in context are judged as likely or unlikely to be verbal occurrences. The second 

step is necessary because of lexical ambiguity. 

The first stage uses the fact that all English verbs can occur either with or without 

the suffix –ing. Words are taken as potential verbs if and only if they display this 

alternation in the corpus. There are few words that meet this criterion but do not occur as 

verbs, including income/incoming, ear/earring, her/herring, and middle/middling. 

However, the second stage of verb detection, combined with the statistical criteria, 

prevent these pairs from introducing errors. The algorithm assumes that a potential verb 

is functioning as a verb unless that context suggests otherwise. In particular, an 

occurrence of a potential verb is taken as a non-verbal occurrence only i f it follows a 

determiner or a preposition other than to. For example, was talking would be taken as a 

verb, but a talk would not.  

When a putative occurrence of a verb is found, the next step is to identify the 

syntactic types of nearby phrases and determine whether or not they are likely to be 

arguments of the verb. Brent’s strategy for determining whether a phrase P is an 

argument of a verb V has two components: 

1. If P is a noun phrase (NP), take it as an argument only i f there is evidence that it is 

not the subject of another clause. 
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2. Regardless of P’s category, take it as an argument only i f it occurs to the right of 

V and there are not potential attachment points for P between V and P. 

For example, suppose that the sequence that the were identified as the left boundary of a 

clause in the sentence I went to tell him that the idea won’ t fly. Because pronouns like 

him almost never take relative clauses, and because pronouns are known at the outset, the 

algorithm concludes that the clause beginning with that the is probably an argument of 

the verb tell. It is always possible that it could be an argument of the previous verb want, 

but the algorithm treats this as unlikely. On the other hand, if the sentence were I want to 

tell the boss that the idea won’ t fly, then the algorithm cannot determine whether the 

clause beginning with that the is an argument to tell or is instead to boss, as in I want to 

fire the boss that the workers don’t trust. 

An experimental evaluation shows that Brent’s method does well as far as 

precision is concerned. For most subcategorization frames, close to 100% of the verbs 

assigned to a particular frame are correctly assigned (Brent, 1993: 255). However, this 

method does less well at recall. For the six frames covered by Brent (1993), recall ranges 

from 47% to 100% but these numbers would probably be appreciably lower if a random 

sample of verb types had been selected instead of a random sample of verb tokens, a 

sampling method that results in a small proportion of low frequency verbs (Manning and 

Schütze, 2003: 275). Since low frequency verbs are least likely to be comprehensively 

covered in existing dictionaries, they are arguably more important to get right than high-

frequency verbs. 

Brent attributes the errors in frame detection to two main reasons. The first is that 

the cues are fairly rare, so verbs that occur fewer than 15 times tend not to occur with 
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these cues at all.  The other reason is that these cues occur fairly often in structures other 

than those they are designed to detect. For example, the words record, recover, and refer 

all occurs in the corpus with cues for an infinitive, although none of them in fact takes an 

infinitive argument.  

Moreover, there is a ceiling on the number and nature of frames that can be 

identified using Brent’s cue-based approach. The reason for this inextensibility is that this 

approach has depended upon finding cues that are a very accurate predictor for a certain 

subcategorization. However, for many frames there are no highly accurate cues. For 

example, some verbs subcategorize for the preposition in, e.g., (17), and the majority of 

occurrences of in after a verb are NP modifiers or locative adjuncts, e.g., (18). There is no 

high accuracy cue for verbs that subcategorize for in (Manning 1993: 3). 

(17) a. Two women are assisting the police in their investigation. 

b. We chipped in to buy her a new TV. 

c. His letter was couched in conciliatory terms. 

(18) a. He gauged support for a change in the party leadership. 

 b. He built a ranch in a new suburb. 

 c. We were traveling along in a noisy helicopter. 

2.2.2 Manning 

Manning (1993) suggested that the solution to this problem is to collect as much 

co-occurrence statistics as possible from the text corpus, and then use statistical filtering 

(e.g., significance test, a mutual information measure, or any other form of statistic) to 

weed out false cues. He proposed a method for producing a dictionary of syntactic frames 

from unlabeled text corpora. Kupiec’s stochastic part-of-speech tagger was used to tag 
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approximately 4 million words of the New York Times newswire. Frame learning was 

then performed by a program that processed the output of the tagger. This program had 

two parts: a finite state parser ran through the text, parsing auxiliary sequences noting 

whether a verb is active or passive, and then it parsed complements following the verb 

until something recognized as a terminator of subcategorized arguments is reached.10 

Whatever has been found is entered in the histogram. A second process of statistical 

filtering then took the raw histograms and decided the best guess for what frames each 

observed verb actually had. The parser does not learn from participles since an NP after 

them may be subject rather than the object (e.g., the yawning man). 

 The program acquired a dictionary of 4900 frames for 3104 verbs (an average of 

1.6 per verb). In general, all the verbs for which frames were determined are in Webster’s 

(Gove 1977), the only noticed exceptions being certain instances of prefixing, such as 

overcook and repurchase, as well as verbs such as fax, sensationalize, and solemnize. All  

in all, the system achieved a token recall of 82%.  

2.2.3 Ushioda et al. 

Ushioda et al. (1996) also make use of a PoS tagged corpus and finite-state NP 

parser to recognize and calculate the relative frequency of the same six syntactic frames 

Brent used. A tagged corpus is first partially parsed to identify NPs and then a regular 

grammar is used to estimate the appropriate syntactic frame for each verb token in the 

corpus. Their procedure to automatically find subcategorization frame frequencies is 

given in Figure 1 (Ushioda et al., 1996: 243). 

In an experiment involving the identification of these frames, the system showed 

an accuracy rate of 83%. The most frequent source of errors in frame identification by 
                                                   
10 Manning  (1993) used a period and subordinating conjunctions as frame terminators. 
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this system was errors in NP boundary detection. The second most frequent source was 

misidentification of infinitival purpose clauses, as in He used a crowbar to open the door. 

The phrase to open the door is a purpose adjunct modifying either the verb phrase used a 

crowbar or the main clause he used a crowbar. But the system incorrectly judged such 

adjuncts to be complements of their main verbs. The last source of error was caused by 

verbs that are frequently used in relative clauses without relative pronouns, such as the 

verb need, as in the last thing they need. Ushioda et al.’s system was not able to capture 

this kind of relative clause; consequently, each occurrence of these relative clauses 

caused an error in measurement.  

 
Make a list of verbs out of the tagged corpus. 
For each verb on the list (the ‘target verb’), 

Tokenize each sentence containing the target verb in the following way: All 
the noun phrases except pronouns are tokenized as “n” by a noun phrase 
parser and all the rest of the words are also tokenized as follows: 

 b: sentence initial marker e: sentence final marker 
 k: target verb   t: to 
 i: pronoun   m: modal 
 n: noun phrase    w: relative pronoun 
 v: finite verb   a: adverb 
 u: participial verb  x: punctuation 
 d: base form verb  c: complementizer that 
 p: preposition   s: the rest 

Apply a set of frame extraction rules to the tokenized sentences. These rules 
are written as regular expressions as follows: 

 Frame  Rule 
 NP + NP k(i|n)n 
 NP + CL k(i|n(pn)*)c 
   k(i|n)(i|n)a*(m|v) 
 NP + INF k(i|n(pn)*)ta*d 
 CL  kc 
   k(i|n)a*(m|v) 
 NP  k(i|n)/[^mvd] 
   #pw(i|n(pn)*)a*m?a*k/[^t] 
 INF  kta*d 

 
 

Figure 1: Ushioda et al.’s Frame Identification Procedure 
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2.2.4 Br iscoe &  Carroll  

Briscoe & Carroll (1997), B & C henceforth, proposed a system for distinguishing 

160 verbal frame classes and their relative frequency in English. B & C’s system consists 

of six components, which are applied in sequence to sentences containing a specific 

predicate in order to retrieve a set of frame classes for that predicate (B & C, 1997: 2): 

 

1. A tagger, a first-order HMM part-of-speech and punctuation tag disambiguator, is 

used to assign and rank tags for each word and punctuation token in a sequence of 

sentences;  

2. A lemmatizer is used to replace word-tag pairs with lemma-tag pairs;  

3. A probabilistic LR tagger, trained on a treebank, returns ranked analyses; 

4. A patternset extractor which extracts frame patterns, including the syntactic 

categories and head lemmas of constituents from sentence subanalyses which 

begin/end at the end of specified predicates;  

5. A pattern classifier which assigns patterns in patternsets to frame classes or rejects 

patterns as unclassifiable on the basis of the feature values of syntactic categories 

and the head lemmas in each pattern;  

6. A patternset evaluator which evaluates sets of patternsets gathered for a (single) 

predicate constructing putative frame entries and filtering the latter on the basis of 

their reliability and likelihood.  

 

To test the performance of their system, B & C took the Susanne Corpus (Taylor &  

Knowles 1988) and LOB corpora (Garside et al. 1987). The system achieved a token 

recall of 80.9%, which is comparable to previous approaches. B & C attributed most of 

the errors to the filtering phase, which they describe as the ‘weak link’  in the system.11 

                                                   
11 An extension to B & C’s system was suggested by Korhonen (1997). Korhonen’s method is not 
discussed in detail here since it is mainly a method for improving the filter component in B & C’s, and 
consequently does not present a new perspective on frame extraction. The basic improvement method was 
to guide the statistical filter with a more knowledge-based component seeded with general linguistic 
information. Korhonen made use of frame alternations: alternate ways in which verbs can express their 
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2.2.5 Buchholz  

 Buchholz (1998) presented an unsupervised learning method for 

subcategorization acquisition that takes care of what he sees as a shortcoming in the 

previous methods; that is, they are knowledge-based and thus require either existing tools 

(e.g., a wide-coverage parser in the case of B & C) or an important amount of time and 

linguistic expertise to write the necessary patterns, regular expressions, finite-state NP 

parsers etc (e.g., Brent, Manning, and Ushioda). 

 In contrast, Buchholz’s method only requires PoS-tagged text as input. This 

method is based on the assumption that subcategorized constituents differ from non-

subcategorized ones in terms of frequency (Meyers et al. 1994). This means that the 

subcategorization property of a verb should somehow show up when enough sentences 

containing this verb are collected. The idea of unsupervised learning then is to model the 

global behavior of each verb, and group verbs that behave syntactically similar. These 

groupings should then ideally correspond to groups of verbs with similar 

subcategorization properties. The information about the group membership of a verb 

could therefore be used by a parser when making local decisions, e.g., about the 

complement- or adjuncthood of a constituent. 

 The global subcategorization behavior of a verb is extracted using hierarchical 

clustering (Schütze, 1994; Zavrel and Veenstra, 1995): each word w is represented by a 

high-dimensional vector, and each component i of the vector shows the times that another 

word xi appeared inside a fixed window around w in the text. Buchholz defined the 

                                                                                                                                                       
arguments. The method Korhonen used to determine alternations was based on finding correlations 
between two patterns of complementation.   
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window of a verb v as stretching only to the right and being delimited by the next verb or 

the boundary of the sentence.  

 Following Brent (1993), Buchholz did not count all the words that occur in a 

window around a verb, he only counted the capitalized words, numbers and closed-class 

words, and only those that occur at least four times in the whole corpus. After a rough 

lemmatization of verbs in the corpus, each of the 3531 verb lemmas in the corpus had a 

151-dimensional vector. These vectors were then hierarchically clustered, producing a 

cluster tree that is visualized in Figure 2 (Buchholz, 1998: 5). 

             a 

            b 

             c 

           d 

Figure 2: Visualization of a hierarchical cluster of four vectors 

 

In theory, verbs with similar subcategorization behavior should be close in the tree and 

verbs with different subcategorization behavior should be at a long distance from each 

other. In practice, however, it is hard to verify this claim by just looking at the tree.  

Accordingly, this binary tree was converted into a propositional i.e., feature-value 

format in the following manner. Each node in the cluster tree was assigned a unique 

number. Consequently, each vector is characterized by the sequence of numbers through 

the path from the top node to the vector leaf. These sequences were then used in a 

memory-based learner12 to evaluate the influence of the learned subcategorization 

clusters on the accuracy of learning the distinction between complements and adjuncts. 

The performance of the learner was tested on data extracted from the Wall Street Journal 

                                                   
12 See Daelemans et al. (1998) for a discussion and implementation of memory-based learning in NLP. 
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Corpus in the Penn Tree Bank (Bies et al. 1995). The corpus is annotated with PoS tags 

and parse trees. Buchholz reported a 93.1% accuracy of the memory-based learner on the 

complement-adjunct distinction.13 

3. Conclusion 

This chapter discussed some theoretical and practical issues in subcategorization 

frames learning. It started with a discussion of the differences between the categorical 

and probabilistic approaches to frames. Then it reviewed the previous methods for frame 

identification, and discussed some of the theoretical and practical issues involved. The 

mechanisms used in these methods have raised fundamental theoretical and practical 

issues in language acquisition. They could thus a source of hypotheses for experimental 

test. Seen in this wider perspective, these methods could be more empirically and 

theoretically rigorous if they are based on more formal and objective foundations. These 

issues are addressed in the next chapter in terms of the notion of bootstrapping. 

                                                   
13 No details were given in Buchholz (1998) on how the performance of the learner was evaluated. 
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Chapter  3 

Bootstrapping 

This chapter discusses in terms of bootstrapping some issues in the methods for frame 

learning described above and the assumptions they make. It introduces the concept of 

bootstrapping, discusses the bootstrapping issues in these methods, and then concludes 

with the different approaches to bootstrapping. 

3.1 Bootstrapping  

In general terms, bootstrapping is used here to mean the process of attaining new 

knowledge on the basis of already existing knowledge. In the context of language 

acquisition, bootstrapping implies that the learner, on the basis of already existing 

knowledge and information processing capacities, can make use of specific types of 

information in the linguistic and non-linguistic input in order to determine the language 

particular regularities which constitute the grammar and the lexicon of the target 

language (Weissenborn and Höhle 2001). The central assumption behind the 

bootstrapping approach is that there is a systematic relationship between properties of the 

input at one level of representation (i.e. source domain), which the learner has access to, 

and another level of representation (i.e., target domain). In other words, the learner 

makes use of the regularities that characterize the interface, i.e., the interaction between 

different linguistic and non-linguistic domains of representation.  

Depending on the type of information which the learner makes use of, four main 

bootstrapping approaches can be distinguished: semantic, syntactic, prosodic, and 
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distributional.14 These approaches will be discussed in more detail below. A problem 

with the inter-domain approaches is that there is only a partial, i.e., a non-perfect 

correlation between the source and the target domains (e.g., Selkirk 1984; Jackendoff 

1997). In order to overcome the difficulties resulting from this type of discrepancy, it has 

been proposed that the learner makes use of different types of information and a 

correlated set of input cues to bootstrap into a target language (see for example, Hirsh-

Pasek & Golinkoff 1996a; Mattys, Jusczyk, Luce, & Morgan 1999; Morgan, Shi, & 

Allopenna 1996; Christiansen et al. 1998). According to this integrated approach to 

bootstrapping, the problem of acquisition is easier i f multiple cues are taken into account. 

This suggests that the learner may aim to exploit as many sources of information as 

possible in order to narrow down the hypothesis space. However, one possible problem 

with this approach is that recognizing and using correlated sets of cues would require 

more sophisticated abilities than does use of individual cues (Morgan et al. 1996). In 

addition to these inter-domain and integrated bootstrapping approaches, Cartwright &  

Brent (1997) introduced the notion of autonomous bootstrapping, which applies within a 

single domain. 

Other questions related to the process of bootstrapping are whether and how the 

bootstrapping strategies and their interrelation may change during development. Such a 

change is to be expected given the constantly increasing knowledge of the child in the 

linguistic and non-linguistic domain. For example, the growing lexicon of the child, 

especially in the domain of the closed class, functional vocabulary which in languages 

like English, French or German constitute about 50% of the lexical tokens of any given 

                                                   
14 Syntactic and distributional bootstrapping approaches are traditionally grouped under syntactic 
bootstrapping. To avoid confusion, syntactic bootstrapping will be used to refer to the classical approach, 
and distributional bootstrapping to refer to bootstrapping based on the revived distributional analysis. 
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text, should considerably facilitate and enhance the lexical (e.g., word segmentation and 

categorization) and the syntactic (e.g., determination of syntactic boundaries) 

bootstrapping capacities of the child because of the distributional properties of these 

items (Weissenborn and Höhle 2001; Clark and Clark 1977; Kimball 1973). 

In addition to the dependency on the perceptual and representational capacities of 

the child in the different linguistic and non-linguistic domains, success of bootstrapping 

strategies will depend on the availability of information processing capacities like 

memory and attention which are necessary to integrate the information extracted from the 

input into the learning mechanisms. Thus, linguistic knowledge acquisition on the basis 

of distributional learning puts particular demands on memory because of the necessity to 

keep track of the relevant co-occurrence relations. The existence of such frequency 

effects in prelinguistic learners points to the importance of memory processes (e.g., 

Jusczyk et al., 1994).  

In order to understand the acquisition process, it is crucial to ask to which extent 

(and how) the learner uses the information accessed in the learner’s rule learning 

mechanisms (via bootstrapping mechanisms). The fact that the learner is sensitive to a 

certain property of the input which may be relevant from a theoretical perspective for the 

acquisition of a particular aspect of linguistic knowledge does not yet mean that the 

learner actually uses this information to acquire this knowledge (Weissenborn and Höhle 

2001). 

With this brief introduction about bootstrapping in mind, I discuss below the 

bootstrapping issues in the previous methods for subcategorization frame learning. 
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3.2 Bootstrapping Issues in Previous Methods 

 In the case of Brent’s method, cues can be easily identified in the input, for the 

reasons given in the previous chapter, and frames can be learned based on the 

information provided by these cues. Verb identification is based on a simple 

morphological cue in English, i.e., verbs usually occur with or without _ing. In the other 

methods, it is implicitly assumed that frame acquisition is not feasible without PoS and 

partial parse knowledge. A logical justification for this assumption may be built on 

compositionality if we interpret a frame as a structural whole whose parts are the PoS 

tags and NP arguments, and therefore the acquisition of the parts should occur before the 

acquisition of the whole. Though Brent’s initial knowledge seems more plausible than its 

counterpart in other algorithms, all these mechanisms still suffer from a major 

learnability paradox (Brent 1994: 435):  

“…young children must infer some of the lexical knowledge of their 

languages – the syntactic facts about individual words – from larger 

syntactic structures. But it is difficult to see how children could identify 

syntactic structures in an utterance without already knowing the syntactic 

functions of some of the words in the utterance. This poses an apparent 

paradox: to learn lexical syntax, children must recover the syntactic 

structure of the input; to recover syntactic structure, they must know 

lexical syntax – the bootstraps need bootstraps (Emphasis added).”  

Brent assumes that children first learn the syntactic properties of function words that are 

extremely common and highly informative about syntactic structure. However, these 

syntactic functions cannot be learned without previous syntactic knowledge that needs 
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function words to be learned in the first place. Verb identification is also similarly 

circular. For the _ing rule to apply, the learner should have the knowledge that this suffix 

is licensed only with verbs. The PoS and NP knowledge assumed necessary by other 

methods for frame acquisition may implicitly need this frame information to be extracted. 

In other words, these methods used contextual information in order to identify verbs as 

well as other categories and phrases. Given that a verb’s frame constitutes a major 

portion of the context where a verb occurs, we are then faced with a bootstrapping 

paradox, i.e., for X to be identified, it needs information about Y, yet for Y to be 

identified, it needs information about X. 

 Another bootstrapping-related issue in these methods is what can be termed the 

Sequentiality Problem. That is, frame acquisition does not take place until function 

words, in Brent’s, and PoS and NPs, in other systems, have been acquired. This has two 

implications. The first is that subcategorization occurs only when categorization has been 

fully completed, and the other is that subcategorization information does not play any 

role in identifying syntactic categories and NPs in the input. Language acquisition 

research has shown that this is not the case.  

According to Nelson’s (1973: 37) study of 18 children with an age range from 16 

to 28 months, it was shown that children at this age range were able to produce 

multiword utterances that exhibit relatively little structural variation. Examples of these 

utterances are given in Table 8 below, where first names and two-figure numbers indicate 

the name and age – in months – of the child who produced the utterance concerned 

(Bloom 1970, 1991; Braine 1976; Radford 1990, among many others). Despite the 

different explanations of their nature, what is clear from these utterances is that they 
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constitute rudimentary realizations of the subcategorization frames of the verbs involved 

(For possible syntactic and semantic explanations of these utterances, see O’Grady 

1997:34-54). 

Utterance Child  Age 
Miller try Susan 24 
See cow Eve 25 
Doggy bit Adam 28 
Kathryn no like celery Kathryn 22 
Wayne taken bubble Daniel 21 
Hayley draw boat Hayley 20 
Baby ride truck Allison 22 
Want mommy come Jew 21 
Daddy walk Jonathan 24 

 
Table 8: Examples of early multiword utterances (Nelson 1973: 37) 

 

For example, verbs such as try, bite, come, and walk can substantiate an intransitive 

frame, whereas verbs like see, like, take, draw, want, and ride can realize a transitive 

frame. At this stage, the child has a vocabulary of about 400 words, 46.8% of which are 

nouns compared to 8.3% verbs (Bates, Bretherton, and Snyder (1988:153). This means 

that the child shows sensitivity to subcategorization frames with the earliest emergence of 

“ just enough”  information of the categories constituting rudimentary frames.  

 To summarize, in this section I have discussed some bootstrapping issues in the 

previous methods for frame learning. The objective of this discussion was to stress the 

importance of handling these issues in order to strengthen the theoretical and practical 

value of the learning mechanisms used in these methods. It is argued throughout this 

dissertation that a learning mechanism that takes into consideration the issue of 

bootstrapping is more likely to provide a more efficient learning mechanism both 
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theoretically and practically. Accordingly, the following section provides a detailed 

discussion of the different approaches to bootstrapping and the issues they raise. 

3.3 Approaches to Bootstrapping 

Theoretical accounts of language acquisition have emphasized the role of innate 

knowledge, with the influence of the input playing a relatively minor role (e.g., Chomsky 

1965). Even if we assume an essential role of some innate knowledge, the quantitative 

relation between this knowledge and the input aside for now, we still have to explain how 

this knowledge interacts with the input to bootstrap into the target language. For example, 

if the space of innate knowledge includes statements such as  

“ there exist nouns, verbs, etc...” , such linguistic entities are not marked in 

the linguistic input to the learner in any way, and the learner must have 

some way of detecting these elements in the input and mapping them onto 

the appropriate categories.”  (Pinker 1984:38)  

This ultimately means that no matter how great the qualitative and/or quantitative 

contribution of innate knowledge to language acquisition, some input-driven aspects of 

language (e.g., vocabulary) must be learned, and that putatively innate knowledge must 

be tuned (e.g., by parameter-setting) to the specific properties of the language to be 

learned. In other words, what is needed is a set of learning mechanisms that transform the 

initial state of the learner into a target state/language depending on the information 

coming from the input. A number of mechanisms have been proposed to handle this 

transformation, under the umbrella concept of bootstrapping, which are reviewed and 

assessed below.  
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3.3.1 Semantic Bootstrapping 

 Under this approach, syntactic entities are canonical structural realizations of 

semantic entities in a word-onto-world fashion (Grimshaw 1981; Macnamara 1982; and 

Pinker 1984, 1994). The main argument in this approach is that although grammatical 

entities like noun or verb do not have semantic definitions, nouns and verbs typically 

refer to distinct, identifiable semantic classes in the input. That is, people and physical 

objects are referred to with nouns; activities and changes of state with verbs; properties 

and colors with adjectives, and so on (Croft 1991). Notions like physical objects, agent, 

and action are therefore available to the learner in the input. Accordingly, the learner 

starts out with some basic constraints on word learning: there are objects, properties and 

events which function as the inductive bases; objects map to nouns, properties map to 

adjectives and events map to verbs. Once the learner has this basic scaffolding of 

semantically induced information about word syntactic categories and lexical items 

belonging to these classes, the learner is in a position to acquire the syntactic rules based 

on these categories. 

In addition, propositions with action predicates involving the semantic relations 

agent-of-action and patient-of-action may be expressed using the grammatical relations 

SUBJECT and OBJECT.15 Presumably, such notions as physical objects, physical action, 

agent-of-action, and so on, unlike nounhood, verbhood, and subjecthood, are available to 

the learner perceptually and are elements of the semantic representation input to the 

language acquisition mechanisms (Pinker 1984: 39). If the learner tentatively assumes 

these syntax-semantics correspondences to hold, it is possible to make the correct 

inferences. The categorization of words can be inferred from their semantic properties, 
                                                   
15 For a hypothetically complete list of possible mappings, see Pinker 1984: 41. 
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and their grammatical relations can be inferred from the semantic relation in the event 

witnessed.  

 However, the word-world isomorphism implied by this approach does not hold in 

many cases. As Quine (1960) has noted there is an infinite set of meanings compatible 

with any situation, so the learner has an infinite number of perceptually indistinguishable 

hypotheses about meaning to choose among. For example, all the situations in which a 

rabbit is present are also situations in which an animal is present, an object is present, a 

set of un-detached rabbit parts are present, and so on.  

Moreover, some actions are often not linguistically labeled, e.g., the action of 

someone opening the door is most probably associated with the linguistic production 

“ I’m home” , and not “ I’m opening the door” . Likewise, some aspects of verb meanings 

challenge a view of verb learning based on observation of events alone. Verb meanings 

do not simply label categories of events but represent the speaker’s choice of perspectives 

on events (e.g., Bowerman 1985; Clark 1990; Fillmore 1977; Fisher 1994, 1996; 

Gleitman 1990; Talmy 1985). For example, feed and eat denote not different world 

events but different perspectives on the same events. Give and get also describe the same 

scenario.  

Furthermore, just as speakers of a single language can choose to describe an event 

from one perspective or another, different languages make different choices among 

perspective options (e.g., Bowerman 1985, 1990; Choi & Bowerman 1991; Grimshaw 

1994; Talmy 1985). That is, laying out semantic bootstrapping in terms of a word-world 

isomorphism faces a clear induction problem. 
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 One possible solution to this induction problem is to assume that semantic 

induction is inherently constrained (Pinker 1994: 378): “not all logically possible 

hypotheses are psychologically possible.”  Instead, the hypotheses that a learner’s word 

learning mechanisms make available are constrained in two ways.  

The first constraint comes from the representational machinery available to build 

the semantic structures that constitute mental representations of a word’s meaning: a 

Universal Lexical Semantics, analogous to Chomsky’s Universal Grammar (e.g., 

Moravcsik 1981; Markman 1989, 1990; Jackendoff 1990). For example, this 

representational system would allow ‘object with shape X’  and ‘object with function X’  

as possible word meanings, but not ‘all the un-detached parts of an object with shape X’ , 

‘object with shape X or Buick’, and ‘object and the surface it contacts’  (Pinker 1994: 

379).  

The second constraint comes from the way in which the learner’s entire lexicon 

may be built up; on how word’s meaning may be related to another word’s meaning (see 

Miller and Charles 1991, Miller & Fellbaum 1992). For example, the lexicons of the 

world’s languages freely allow meronyms (words whose meanings stand in a part-whole 

relationship like body-arm) and hyponyms (words that stand in a subset-superset 

relationship, like animal-mammal) but do not easily admit true synonyms (Bolinger 1977, 

Clark 1987, Miller & Fellbaum 1992). A learner would therefore not posit a particular 

meaning for a new word if it was identical to some existing word’s meaning.  

 From an NLP perspective, semantic bootstrapping has another limitation. Though 

the extra-linguistic information exploited in this approach plays a central role in the 

acquisition of language, its utility is difficult to evaluate computationally, because the 
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learner’s representation of the environment is unknown—even if the resources to compile 

corpora relating language and environment were available, it would still be unclear how 

the environment should be encoded (Redington & Chater, 1997). It is shown in Chapter 6 

that, the utility of this extra-linguistic knowledge can be partially evaluated if we limit the 

set of semantic cues to names of people and things and a subset of pronouns that are easy 

to identify in the input. 

3.3.2 Syntactic Bootstrapping 

The unreliability of the word-onto-world mapping motivated the syntactic 

bootstrapping approach to verb learning, which advocates the possibility of deducing the 

word meanings from the semantically relevant syntactic structures associated with a verb 

in input utterances (Gleitman 1990; Landau and Gleitman 1985). According to this 

approach, even very partial syntactic information is sufficient to give the learner some 

sentence-structural cues to the interpretation of verbs (Fisher 1996: 43). This approach 

also assumes that nouns are acquired prior to predicates (from context), which are then 

used to learn verb meanings.  

Any form of syntactic bootstrapping depends on two fundamental assumptions 

about verb semantics and syntax, supported by a long tradition of work on the 

organization of the lexicon (e.g., Bloom 1970; Chomsky 1981; Dowty 1991; Fillmore 

1977; Fisher 1994; Fisher, Gleitman & Gleitman 1991; Fisher et al. 1994; Grimshaw 

1990; Gruber 1965; Jackendoff 1983, 1987, 1990; Landau & Gleitman 1985; Rappaport 

& Levin 1988). First, a basic part of the meaning of a verb is a semantic predicate-

argument structure specifying how many and what types of participants play out the 

event described by the verb. Kick, for example, has two logical arguments – the kicker 
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and the kicked (Fisher 1996: 43). Second, each verb’s argument structure is related to the 

sentence structures in which it can occur. If a verb describes the motion of an object, for 

example, it must be able to specify that object as a noun phrase in sentences. 

These basic assumptions about lexical organization ensure that the sentence in 

which a novel verb occurs will be related in principled ways to its meaning, as needed for 

structure-aided verb learning to work.  

In this approach, there are two views on how to draw semantic conclusions from 

sentence structures. Both views depend on the predicate/argument or structural nature of 

verb semantics, and on principled relations between meaning and syntax, but differ in 

their assumptions about the degree of syntactic knowledge needed to recover meaning 

from structure. 

The first procedure depends on reverse linking whereby the learner could infer 

aspects of verb meaning from sentences using rules linking thematic roles and syntax. 

Thematic roles are categories for participants in semantic structures. These categories 

represent the similarity among the agents or patients of various causal actions, the themes 

of diverse motions and changes of state, and so on. Rules linking thematic roles with 

syntactic categories like subject and object have been proposed to capture strong 

regularities in the assignment of thematic roles to positions in sentences (e.g., Dowty 

1991; Fillmore 1977; Grimshaw 1981, 1990; Jackendoff 1987, 1990; Pinker 1984, 1989, 

1994). Causal agents, for example, are very likely to be sentence subjects across 

languages (e.g., Bates & MacWhinney 1982; Dowty 1991; Grimshaw 1981; Keenan 

1976). A partial list of the linking rules given by Pinker (1989: 74), following Rappaport 

& Levin (1988) and Jackendoff (1983, 1987), is shown in (19). 
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(19) a. agent � subject 

b. patient � direct object  

c. theme � subject, or if subject is already linked, direct object 

 

 However, this procedure is not without problems. In order to use the reverse 

linking procedure, the learner must parse the sentence, identifying one noun phrase as the 

subject and another as the object. The subject of the sentence is identified by various 

means in different languages, including word order, subject-verb agreement, and case 

marking particles (e.g., Keenan 1976; Croft 1990). Even supposing that learners begin 

with the linking rules in (19), they will not be able to apply them in reverse, inferring 

semantic roles from syntactic positions, until they have learned the surface cues that 

identify subjects and objects in the target languages. This takes us back to the original 

bootstrapping paradox.  

 To circumvent this problem, Fisher (1994, 1996) proposed what she called The 

Analogical Mapping Procedure. The main idea behind this procedure is that learners 

need only structural cues, and not full structures, of some kind to interpret verbs (cf. 

Brent 1991, 1993, 1994). Accordingly, the learner could obtain semantic information 

from a partial or presyntactic representation of a sentence consisting simply of the set of 

recognizable nouns in the sentence. If so, then sentence structures could bootstrap verb 

interpretation even before the learner can identify the grammatical parts of a sentence 

(Fisher 1996: 45). In order for this procedure to work, Fisher (1996) capitalizes on the 

assumption that semantic structures of verbs are fundamentally of the same kind as the 

nonlinguistic conceptual structures by which events are represented (e.g., Grimshaw 

1990; Jackendoff 1983, 1987, 1990; Pinker 1989; Rappaport & Levin 1988). Both verb 
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semantic structures and conceptual representations of events demand a division between 

predicates and arguments, and thus between relations and the objects they relate. 

According to this procedure, sentence interpretation takes the form of mapping one 

structure onto another: A sentence can be represented as a structure relating a set of noun 

phrases, while the conceptual representation of an event can be viewed as a structure 

relating a set of event participants. To the extent that these two distinct representations—

syntactic and conceptual—have similar structures, a sentence could provide a partial 

analogy for its interpretation in conceptual terms (e.g., Gentner 1983). Assuming that 

conceptual and semantic structures are of like kind, the result of this analogical mapping 

will be, roughly, a semantic structure (Fisher 1996). 

 For the purposes of this dissertation, this procedure has some interesting 

consequences for learning. First, this route from structure to meaning can be used without 

identifying which noun is the subject and which is the object. To begin mapping two-NP 

verbs onto two-participant conceptual relations by structural analogy, the learner need 

only have begun to recognize some nouns. If the learner can draw this kind of inference, 

then simple structural properties of sentences could influence interpretation before much 

language-specific syntactic knowledge is acquired.  

 Second, since the analogical mapping procedure makes no mention of the verb as 

a formal category, it could guide the interpretation of any argument-taking predicate. This 

includes verbs, prepositions, and predicative adjectives. Like verbs, prepositions and 

predicative adjectives take NP arguments and encode semantic relations among those 

arguments. This means that all predicates should therefore be initially interpreted in the 

same way. Landau & Stecker (1990) present intriguing evidence that young children 
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interpret a novel word as a semantic predicate if it appears with NP arguments. This 

finding is consistent with the notion that a sentence, partially represented as a structure 

containing NP arguments, can serve as a quite general analog of its semantic 

predicate/argument structure. The generality of the analogical mapping procedure is an 

advantage for the theory of the acquisition of predicate terms: Not all languages have 

distinct categories of prepositions and predicate adjectives, but may instead use verbs to 

convey spatial or attribute meanings (e.g., Croft 1990). 

 Finally, the generality of the analogical mapping procedure yields a third potential 

benefit for learners: Once some relational terms are acquired in this structure-sensitive 

way, they could serve, in turn, as second-order cues for the acquisition of new verbs. This 

provides support to the view adopted by this dissertation that children show sensitivity to 

frames with the earliest emergence of “ just enough”  information of the categories 

constituting rudimentary frames. Since this conclusion has not been tested using a 

corpus-based method, it is adopted and tested in the cue-based model in Chapter 6 of this 

dissertation. 

3.3.3 Prosodic Bootstrapping 

 In the prosodic approach to bootstrapping it is generally maintained that there are 

phonological and prosodic cues in the input that may point the learner to specific 

linguistic structures, e.g., clauses and phrases or specific classes of words, such as open 

vs. closed words, lexical vs. functional items, or specific grammatical form classes (e.g., 

Morgan et al., 1996).  

For example, a potential prosodic cue for word segmentation is the canonical 

patterns of strong and weak syllables exhibited in many languages (Cutler & Cutler 1987; 
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Cutler & Norris 1988; Jusczyk et al. 1993). One possibility is that they can identify 

function morphemes as a phonological class based on the fact that function morphemes in 

a particular language usually share several phonological properties (Jakobson & Waugh 

1987). For example, English function morphemes typically contain fricative and nasal 

consonants, are produced with the reduced vowel schwa (which only occurs in unstressed 

syllable), and are an integral part of the alternating stress pattern of the language (Gerken 

et al 1990; Gerken 1994a; Morgan et al. 1996; Mattys and Jusczyk 2001). Such properties 

might permit syntactically naïve learners to assign words to two major categories, which 

closely correspond to content words and function words, before discovering the 

distributional regularities of particular morphemes (Gerken 1994a; Morgan et al. 1996).  

Moreover, Kelly (1996) and (Durieux & Gillis 2001) proposed several 

phonological features of a word itself that could be used to predict its syntactic 

categories. Kelly (1996) has shown that not a single noun-verb homograph exists in 

which the verb has first syllable stress but the noun has second syllable stress. If the noun 

and verb versions of a word contrast in stress at all, the noun always has the first stress 

syllable and the verb has second syllable stress. An examination of thousands of English 

disyllabic nouns and verbs, which was not restricted to noun-verb homographs has shown 

that 90% of words with first syllable stress are nouns, whereas 85% of words with second 

syllable stress are verbs (Kelly & Bock 1988; Kelly 1992). Durieux & Gillis (2001) have 

shown that the integration of stress, length, vowel and constant quality leads to a good 

prediction of the syntactic category for English as well as Dutch words. 

It was also shown that timing, lengthening, and pausing in spoken English are 

systematically related to the geometry of the phrase structure tree, i.e., they tend to occur 
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at clause and phrase boundaries (e.g., Cooper 1975; Cooper & Paccia-cooper 1980; Klatt 

1975; Gleitman et al 1988; Jusczyk et al 1992). Moreover, on a higher level, a particular 

falling intonation contour usually denotes a declarative or imperative sentence, while a 

particular rising intonation contour usually indicates a yes/no interrogative. Accordingly, 

if the learner can invert the function mapping syntactic structure onto the prosodic 

structure and intonation contour, it is possible to recover the syntactic analysis of input 

sentences without depending on any correspondence between syntax and semantics, and 

consequently to coin correct rules for the language.  

Though prosodic information provides some cues to some syntactic categories 

and structural configurations, there are still some discrepancies between the prosodic 

form and the syntactic form that should be accounted for in order for this type of 

bootstrapping to be efficient. (See Lebeaux (1997) and Nespor & Vogel (1986), for a 

complete list of these differences).  

The first discrepancy is that “ Prehead Specifiers of NP are grouped with the head 

in the Prosodic Structure, but separated from it in the Syntax”  (Nespor & Vogel 1986). 

The following examples show the difference between the structural bracketings, in (a) 

and the prosodic bracketings in (b) (Lebeaux 1997, 2001). 

(20) a. [NP the [N’  picture of Mary]]     Syntax 

b. [the picture]
�

 [of Mary]
�

 {
�

 = phonological phrase}  Phonology 

(21) a. [the [tall [cousin of Jeff]]]    Syntax 

b. [the tall cousin]
�

 [of Jeff]
�

    Phonology 

 

The second discrepancy is that between the syntactic and prosodic grouping of the 

auxiliary verbs. In the syntax, the bracketing of these elements is right-branching, while 
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in the phonology, the auxiliary verb forms a sort of complex verb with the main verb. The 

following bracketings show this discrepancy (Lebeaux, 2001: 91). 

 

(22) a. [has [been [avidly [reading [about NP]]]]]  Syntax 

b. [has been avidly reading] [about NP]   Phonology 

 

The third discrepancy involves the prosodic and syntactic properties of the 

relative clause. In cases where this structure is recursive, i.e., there are more than one of 

them, they tend to break into individual intonational units (Chomsky & Halle 1968; 

Nespor & Vogel 1986). The following example shows the discrepancy (Lebeaux 2001: 

93):  

(23) a. this is the cat [that ate the rat [that ate the cheese]]      Syntax 

b. [this is the cat]I [that ate the rat]I [that ate the cheese]I     Phonology  

 

Here, the right-branching structure in the syntax breaks into three coordinated units in the 

phonology.  

 A fourth type of discrepancy, actually a cluster of three such discrepancies, seems 

quite systematic in English. This is the cliticization of a closed class head, H, onto a 

preceding specifier, even though it is grouped syntactically with the following 

complement. Lebeaux (2001) distinguished three distinct cases in which this occurs: the 

level of the Determiner Phrase (DP), at the level of Inflectional Phrase (IP), and the level 

of Complementizer Phrase (CP), as shown in the following examples.  
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(24) Syntax 

a. level of IP:  [John] [is going] 

b. level of CP:  [what] [is that] 

c. level of DP:  [John][‘s book] 

(25) Phonology 

a. level of IP:  John is going 

b. level of CP:  what is that 

c. level of DP:  John’s book 

That is, for all categories, the closed class head is cliticized backward, though it forms a 

syntactic category with the forward element. 

3.3.4 Distr ibutional Bootstrapping 

This approach is inspired by, and builds on work in structural linguistics, where 

distributional methods were used as a methodology for deriving linguistic theory, rather 

than as models of acquisition. Accordingly, it is maintained that grammatical 

categories/constituents can be discovered on the basis of distributional relations among 

words; the occurrence of these words relative to each other within a context window 

(e.g., Bloomfield 1933; Harris 1951; Maratsos & Chalkley 1980; Finch & Charter 1992a, 

1992b; Schütze 1996; Mintz 1996; Clark 2000; Klein & Manning (2001) ; Mintz, 

Newport & Bever 2002).16 The main idea in this approach is that of distributional test 

and substitutability (Bloomfield 1933; Harris1951):  

                                                   
16 The distributional analysis method can be used in theory with any type of information, e.g., semantic, or 
phonological. However, the term distributional bootstrapping will be used to refer to bootstrapping that 
uses only pure co-occurrence distributional information with no reference to semantic, syntactic, or 
phonological information. 
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(i) if all occurrences of word A can be replaced by word B, without loss 

of syntactic well-formedness, then they share the same syntactic 

category;  

(ii) a constituent is a sequence of words with variants which can be 

substituted for that sequence.  

The concept of distributional analysis is described in detail in the following part, since it 

is one of the main mechanisms used in this dissertation. Below I review some 

implementations that use one form or another of this concept in identifying word 

syntactic categories and linguistic constituents. A common feature in these 

implementation of distributional analysis is that they entertain a more relaxed version of 

distributional analysis as proposed in (i) and (ii). Instead of requiring contextual 

equivalence to establish the categorical similarity of words, these implementations 

require only a threshold of contextual similarity. 

 For example, Maratsos & Chalkley (1980) proposed that grammatical categories 

could be established on the basis of the contextual similarity of words. For instance, in 

the sentence The dog is barking at the moon, the fact that both dog and moon are 

preceded by the, and are preceded by the same words throughout many sentences, would 

lead them to be classified together. Other words that fall into the same pattern would be 

classified in the same category. The resulting category would be nouns. 

Assuming distributional analysis, Mintz (1996) and Mintz et al. (2002) also 

showed that by monitoring the immediate contexts of words, the similarity of those 

contexts could be used to cluster lexical items and that the clustering coincided with 

grammatical classes. More specifically, in an analysis of the lexical co-occurrence 
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patterns, Mintz et al. (2002) showed that a window of one word to either side of the target 

word is sufficient to identify clusters that more or less correspond to nouns and verbs.  

Similarly, Finch et al. (1992a, 1992b) and Schütze (1996) expanded the window 

size to include the two words before and after each the target word as context, and were 

able to identify more clusters that more or less look like nouns and verbs, as well as 

pronouns and prepositions.  

Van Zaanen (2000) presented an unsupervised Alignment-Based algorithm to 

bootstrap grammatical constituents based on Harris’s idea of substitutability, which states 

that if two constituents are of the same type then they can be substituted by each other. 

This algorithm searches for constituents by using a reversal version of Harris’s 

implication: if parts of sentences can be substituted by each other then they are 

constituents of the same type. The process of finding constituents applies in two phases. 

The alignment learning phase finds possible constituents by aligning pairs of sentences to 

each other. Groups that are different in both sentences are considered possible 

constituents. The following two sentences show how alignment works: [Book Delta 128 

from Dallas to Boston. Give me all flights from Dallas to Boston.] The italicized words 

indicate similar parts in the sentences. The dissimilar parts in bold are now considered 

constituents. When the second sentence is aligned to the third, it receives another 

constituent, which overlaps with the older constituent. Since the underlying grammar is 

assumed to be context-free, overlapping constituents are unwanted. The selection 

learning phase eliminates overlapping constituents after the alignment learning phase has 

finished. The best constituents are selected based on a statistical evaluation function. The 

probability of each constituent is computed. Using these probabilities, the probabilities of 
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all combinations of all  constituents are computed. The set of non-overlapping 

constituents with the highest probability is chosen to be correct. One problem with this 

system is that it stores all possible constituents and then after all possible constituents are 

found, the best constituents are selected. This makes the system slower with larger 

corpus. 

Klein & Manning (2001) presented another unsupervised system for distributional 

grammar induction using part-of-speech tags as the contextual features.17 The system 

uses a distributional notion of context in the following manner. Let �  be a PoS tag 

sequence. Every occurrence of �  will be in some context x �  y, where x and y are the 

adjacent tags or sentence boundaries. The distribution over contexts in which �  occurs is 

called its signature. The similarity of signatures indicates similar syntactic behavior. 

Accordingly, a metric of similarity is used and an agglomerative clustering process 

applies over tag sequences. Sequences are compared pair-wise, and the pair with the 

maximum similarity is merged. Merging two sequences involves the creation of a single 

new non-terminal category which rewrites as either sequence. Once there are non-

terminal categories, the definitions of sequences and contexts become slightly more 

complex. The input sentences are parsed with the previous grammar state using a shallow 

parser which ties all parentless nodes together under a top root node. Sequences are then 

the ordered sets of adjacent sisters in this parse, and the context of a sequence can either 

be the preceding and following tags, the preceding and following tags, or a higher node in 

the tree. Merging a sequence and a single non-terminal results in a rule which rewrites the 

non-terminal as the sequence (i.e., that sequence is added to that non-terminal’s class), 

and merging two non-terminals involves collapsing the two symbols in the grammar (i.e., 
                                                   
17 For a similar unsupervised algorithm, see Clark (2001).  
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those classes are merged). The grammar rules produced by the system are a strict subset 

of general context-free-grammar rules. As far as this dissertation is concerned, this 

system suffers from a bootstrapping problem, for the reasons discussed in Section 3.2 

above, since it relies on PoS tagged data as input. 

In addition to the problems in the specific implementations of distributional 

learning above, there are some general theoretical problems in distributional 

bootstrapping that, according to nativist approaches, render a completely input-driven 

learning procedure implausible for learning the grammar of human languages. For 

example, a learning procedure that is sensitive to patterns of lexical distribution to induce 

word order would run into problems due to the variability in sentence construction type in 

infant directed speech. 

Moreover, given the role of equivalence and substitutability in distributional 

learning, Pinker (1987) argues that this approach would suffer from a categorization 

problem. For example, given sentences (a-b) below, a distributional learner would 

postulate that fish and rabbits belong to the same class. 

(26) a. John ate fish. 

b. John ate rabbits. 

c. John can fish. 

d. *John can rabbits. 

Then, Pinker argues, when the learner comes across (c), the learner would assume that (d) 

is also permissible, which is incorrect. Pinker argues that this type of erroneous 

generalization would be common. 
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 Another argument against a distributional analysis approach to grammar category 

learning is that often the kinds of distributional regularities that might be important are 

not local but occur over a variable distance, as in the following sentence “The big fluffy 

brown and not so thin dog is barking at the moon”  (Chomsky 1965; Pinker 1987). Here 

the co-occurrence of the and dog spans six words. Thus, the problem is how the learner is 

to know which co-occurrences are important, and which should be ignored. Distributional 

analyses which consider all the possible relations among words in a corpus of sentence 

would be computationally unmanageable at best and impossible at worst. 

More general arguments about the inadequacy of entirely input-based inductive 

mechanisms for learning natural languages are based on the formal demonstration that, 

without information about the types of sentences which are ungrammatical, an entirely 

input-driven learner will not succeed (Gold 1967; Berwick 1985; Wexler & Culicover 

1980; Lightfoot 1991). Due to findings that infant and child language learners do not 

receive this kind of negative evidence (Brown & Hanlon 1970; Morgan & Travis 1989), 

many researchers conclude that bottom-up learning algorithms are not what humans 

utilize. In other words, the task of learning the grammar of a language is impossible, 

unless negative feedback is provided. Since negative feedback appeared to be unavailable 

or unused, this meant that language could not be learned without some additional innate 

constraints. 

At its core, most of the search for innate constraints on language learning is 

grounded on the supposed impossibility of recovery from overgeneralization in an input-

based learning mechanism. 
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In theory, these problems are clearly serious disadvantages in any learning 

approach. Yet there has never been a demonstration that these problems are actual 

problems in real speech corpora, and in particular, in speech addressed to infants and 

young children. The problematic examples might be rare enough that statistically they 

have no overall effect on learning. Mintz (1996) and (Mintz et al. 2002) have shown that 

this is the case, and that these potential problems in fact do not make learning by such 

methods impossible. This suggests that, whatever the strengths of these arguments, they 

are undermined by the successes of the implementations described above. Nonetheless, 

the successes of these methods in the limited aspects of language show that empirical 

research may produce better results than may be expected from considerations of 

linguistic theory (Redington & Chater 1997).  

It is maintained here that with some modifications in the distributional methods, it 

is possible to construct a more well-defined architecture of an acquisition device that 

bootstraps a target language from the interaction between input cues and computationally 

necessary innate knowledge. In such architecture, a possible division of labor between 

distributional methods and traditional formal learning theory is possible (Osherson, Stob, 

& Weinstein 1985). In one possible scenario, distributional methods might be used in 

learning to encode the aspects of the language which are specific to particular languages, 

so that innate language universal knowledge can be brought to bear. This possibility is 

considered in detail in the following parts. 

3.4 Conclusion 

 This part discussed some issues pertaining to language acquisition in general and 

frame identification in particular. Different approaches to the role of language input in 
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learning were approached in bootstrapping terms. The discussion revealed some 

methodological issues that are central to the work presented in this dissertation.  

Firstly, none of the algorithms discussed above has presented a formal and 

uniform description of bootstrapping and its mechanisms: (i) what is a possible 

bootstrap? (ii) what is the quantitative relationship between the initial bootstrapping 

knowledge the algorithm has to use, and the output bootstrapped knowledge it is expected 

to yield? Intuitively, the information needed to identify and use the bootstraps plus the 

information provided by them should be quantitatively smaller, using some quantification 

measure, than the information gained. Otherwise, the whole idea of bootstrapping will be 

paradoxical, from a language-acquisition perspective, and impractical from an NLP point 

of view. None of these algorithms has explicitly addressed such constraints. 

 Secondly, most of these algorithms, particularly those that are distributionally 

motivated, assume that all the data are present at the same time, i.e., at the start of 

learning. This of course is not the case in a natural language acquisition situation where 

the learner receives pieces of the input across an extended period of time. This means that 

these algorithms implicitly assume that initial learning makes use of input information 

that cannot be used unless some learning has already taken place.  

Thirdly, most of the initial knowledge used by these algorithms is language-

specific which reduces the possibility of porting these algorithms to other languages since 

this will need knowing the language first to decide what knowledge is needed for 

bootstrapping. 

Finally, distributional algorithms for frame identification proceed on the 

assumption that learning different aspects of a grammar occurs independently of each 
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other, using different mechanisms. For example, there is a mechanism for verb detection 

that is different and independent from the mechanism used in frame identification, as it is 

the case with Brent’s algorithm. This implicitly means that the knowledge used in one 

mechanism is not reusable in another. In addition to this Autonomy Problem, these 

algorithms suffer from another problem that was mentioned above, i.e., Sequentiality 

Problem; that is, frame acquisition does not take place until function words, in Brent’s, 

and PoS and NPs, in other algorithms, have been acquired. This has two implications: the 

first is that subcategorization occurs only when categorization has been fully completed, 

and the other is that subcategorization information does not play any role at all in 

identifying syntactic categories and NPs in the input. More generally, these two problems 

imply that the knowledge used in one mechanism cannot be reused by another. Language 

acquisition research has shown that this is not the case.  
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Chapter  4 

Cues in the Input 

Different cues have been used in the different approaches to bootstrapping discussed in 

the previous chapters. In semantic bootstrapping objects were used as cues of nouns, and 

actions as cues of verbs. In syntactic bootstrapping, partial structures were used as cues of 

predicates and their meanings. In prosodic bootstrapping, stress patterns were used as a 

cue of closed- and open-class words, as well as nouns and verbs, and timing, lengthening, 

and pausing as cues of clause and phrase boundaries. In distributional bootstrapping, 

distributional similarity was used as a cue of word classes and constituency. Table 9 

summarizes the different cues and the cued events used in different bootstrapping 

approaches. 

Bootstrapping Approach Cues Cued Event 

Semantic Things & People 
Actions & Relations 

Nouns 
Verbs 

Syntactic  Partial syntactic information Verb meaning 

Prosodic Intonation Contours 
Stress Patterns 
Pausing 

Sentence Types 
Open Class vs. Closed Class 
Phrase/Clause Boundary 

Distributional Distributional Similarity 
Substitutability 

Word Classes 
Constituents 

 
Table 9: Summary of cues used in different bootstrapping approaches 

 
This chapter summarizes evidence from psycholinguistic experiments that demonstrate 

children’s (as well as adults) attendance to some cues in the input. Until a formal 

definition of cues is given, it is assumed for now that (i) there are some elements that are 

intrinsically cues by virtue of some properties that make them distinctly marked in the 

input, and that (ii) learners are sensitive to these elements. The learner’s task then is to 

discover the events that might be associated with these elements. Psycholinguistic 
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research has shown that, according to this assumption, stress, pausing, lengthening, 

intonation, entities, properties, events, distributional regularity, and frequency, inter alia, 

are possible cues.  

4.1 Cues in the Signal 

In a set of experiments on English-learning 7.5-month-olds, Jusczyk et al. (1993, 

2001) showed that English-learning infants listened longer to words exhibiting the 

canonical strong-weak pattern of English words than to words exhibiting a weak-strong 

pattern.  

In a similar set of experiments, Echols (2001) showed that English-learning 9-

month-olds attended significantly longer to stimuli containing changes in final syllables, 

and marginally longer to stimuli containing changes in stressed syllables. It was also 

shown that the effects of stress and position are additive, that is, infants attended least to 

changes in unstressed nonfinal syllables, about equally to changes in stressed and in final 

syllables, and most to changes in syllables that were both stressed and final. (See also 

Jusczyk & Thompson, 1978; Kuhl, 1983; Morse, 1972). These results tend to support the 

view that stressed or final syllables are attended to and represented more precisely by 9-

month old infants than syllables that are unstressed and nonfinal. Sansavini et al. (1997) 

reported similar results with newborn Italian infants.  

Evidence in support of the claims that stress patterns are fairly diagnostic of 

grammatical classes was found in stress patterns of disyllabic words (Kelly 1992, 1996). 

An examination of 3,000 disyllabic nouns and 1,000 disyllabic verbs, drawn from Francis 

and Ku
�
era (1982), revealed that 85% of words with final stress are verbs and 90% of 

words with initial stress are nouns. Subsequent experiments in which subjects either had 
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to construct sentences with a disyllabic word which could have either stress pattern, or 

read target sentences containing a disyllabic non-word in either nominal or verbal 

position, showed an outspoken preference for linking iambic words with the verb 

category and trochaic words with noun category. This alternating stress pattern can also 

be used by a syntactically naïve learner to assign words to two major categories, which 

closely correspond to content words and function words, before discovering the 

distributional regularities of particular morphemes (Gerken et al. 1990; Gerken 1994a; 

Morgan et al. 1996; Jusczyk 2001). 

It was also shown (e.g., Cooper & Paccia-Cooper, 1980; Klatt, 1975; Wightman 

et al. 1992) that learners are sensitive to pre-boundary lengthening, or lengthening of the 

rhyme, the part of a syllable that does not include the initial consonant/s – for example, 

[ae] in ‘cat’ or [u] in ‘Lou’, at the end of a grammatical unit.  

There is also evidence of adult speakers’ sensitivity to pause duration (Cooper & 

Paccia-Cooper, 1980; Scott, 1982). For example, speakers tend to produce longer pauses 

at word boundaries when they coincide with clause boundaries.  

In an experiment on sixteen infants aged between 6 and 12 weeks with a 

monolingual French background, Christophe et al. (2003) showed that infants can 

perceive prominence within phonological phrases. 

Beckman & Pierrehumbert (1986) have found that learners are sensitive to the 

fact that a special kind of intonation pattern or tone pattern may occur at a phrase or 

clause boundary.  

It was also demonstrated that infants are capable of discriminating acoustic 

properties such as pitch change by 1-2 months old (Morse, 1972). By 4.5 months, infants 
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begin to show sensitivities to certain prosodic markers in fluent speech, preferring 

passages with artificial pauses inserted at clause boundaries rather than other places in the 

sentence (Juscyzk, Hohne, & Mandel, 1995; see also Hirsh-Pasek et al., 1987; Kemler 

Nelson et al., 1995; Morgan et al., 1993).  

Further insights about infants’ sensitivity to phrase-level prosodic cues (i.e., cues 

associated with phrase boundaries) were provided in a follow-up study which examined 

different sentence types (Gerken et al., 1994). Gerken et al. compared sentences such as 

(27) with sentences such as (28).  

(27) (Joe) (kissed the dog). 

(28) (He kissed) (the dog). 

In sentences of the type exemplified in (27), speakers are likely to produce a prosodic 

boundary before the verb “kissed” , which coincides with the subject/VP syntactic 

boundary. However, in sentences of the type exemplified in (28), which contains a weak 

pronoun, speakers either do not produce a salient prosodic boundary, or place the 

prosodic boundary after the verb “kissed”  (e.g., Gee & Grosjean, 1983). Nine-month-old 

infants showed a preference for passages where the pause was located before the verb 

when sentences such as (27) were used as stimuli, but showed no preference for 

placement of the pause either before or after the verb when sentences with pronoun 

subjects such as (28) were used. In other words, infants demonstrated sensitivity to the 

syntactic boundary only in the first case, when it more reliably coincided with a prosodic 

boundary in natural speech. 

In addition to the evidence these experiments provide for children’s sensitivity to 

these cues, it has also been shown that children may prefer one cue over the other. For 
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example, Mattys et al. (1999) pitted sequences with good prosodic cues and poor 

phonotactic cues to word boundaries against ones with good phonotactic cues but poor 

prosodic cues. English-learning 9 month-olds favored the sequences with the good 

prosodic cues, suggesting that, at this age, they give greater weight to prosodic cues than 

to phonotactic cues.  

4.2 Cues in the World 

Children’s sensitivity to entities in the world has been highlighted by experiments 

on early lexical development that showed the primacy of nouns in the early stages of 

speech. The primacy of nouns, especially object labels, in the early lexicon has been 

reported for language communities as different as English, German, Japanese, Kaluli, 

Mandarin, Turkish, Italian, and Hebrew (Gentner, 1982; Dromi, 1987; Goldfield, 1993; 

Caselli et al., 1995).  

Based on a study of early speech in English and several other languages, Gentner 

(1982) and E. Clark (1983) showed that nouns have primacy in that the words belonging 

to this category are acquired first and are predominant in children’s early vocabulary. 

Table 10 gives a history of the words produced by Tad, whose linguistic development 

was studied by his mother and Gentner. Nouns are clearly the predominant early category 

here. Not only are all but one of the first dozen words to emerge nouns; this category 

remains numerically dominant throughout the first months of linguistic development. The 

second most common word class in Tad’s speech – what Gentner calls the ‘predicate’  

category – consists of words that name a property. This category later divides into verbs 

and adjectives, corresponding roughly to the distinction between action-type properties 

like ‘ running’ and ‘reading’  and state-like properties such as ‘ tall’  and ‘good’.  
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Age (month) Nominal Predicate Expressive Intermediate 
11 dog    
12 duck    
13 Daddy yuk   
 Mama    
 teh (teddy bear)    
 car    
14 dipe (diaper)    
 owl    
 toot toot (horn)    
15 keys    
 cheese    
16 eye    
18 cow hot  bath 
 cup    
 truck    
19 kitty happy oops pee pee 
 juice down boo TV 
 bottle up hi  
 spoon  bye  
 bowl  uh oh  
 towel    
 apple    
 teeth    
 cheek    
 knee    
 elbow    
 map    
 ball    
 block    
 bus    
 Jeep    

 
Table 10: Tad’s Early Words (from Gentner 1982:306) 

 

Similar findings have been reported in many other studies, including the naming 

study conducted by Goldin-Meadow et al. (1976) on three children aged between 8 and 

26 months. Table 11 shows the results of the production task (naming objects and 

actions) and comprehension (pointing to objects and acting out actions in response to the 

experimenter). Consistent with Gentner’s claim, nouns far outnumber verbs in the 

production data from all three subjects and are the first words used in the children’s own 
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speech. The difference between nouns and verbs is less dramatic in the comprehension 

task but still favors the noun category by a factor of about 2. 

 Number of Different Number of Different 
Age (mon. wk.) Nouns Verbs Nouns Verbs 

Lexie 
22.0 7 0 35 22 
24.2 17 0 54 26 
25.0 28 3 58 27 
25.1 40 7 61 27 

Melissa 
19.1 5 0 22 14 
22.1 9 0 40 16 

Jenny 
14.0 10 0 27 9 
16.0 19 0 33 14 
17.0 29 4 38 18 
17.1 34 6 45 18 

 

 

Table 11: Results of Goldin-Meadow et al. (1976) 

 

Further support for the early predominance of nouns can be found in more recent 

studies as well. For example, based on their longitudinal study of 30 children, Bates et al. 

(1988: 153) report that at age 20 months, nouns were dominant (46.8% of total 

vocabulary) compared to verbs (8.3%) and adjectives (7.5%).18 Drawing on diary data 

collected from 1803 subjects aged 8 months to 2;6, Bates et al. (1994: 95) report that 

‘common’  nouns make up almost 40% of the first 50 words in children’s early 

vocabulary; the next largest word-class (so-called ‘predicates’ ) accounts for less than 

10% of early vocabulary items. (Bates and her colleagues did not include proper names 

or places in their calculations; had they done so, the proportion of nouns in early speech 

would have been even higher.) 

                                                   
18 These numbers add up to only 62.6%. The authors did not mention anything about the remaining 37.4%.  
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 Nelson et al. (1993) provide information about the subclasses of nouns found in 

the early vocabulary of children aged between 13 and 20 month; see Table 12. They were 

especially interested in the contrast between basic level objects (BLOCS), which denoted 

a category of ‘discrete whole individual objects’ –e.g., puppy, cheerios, toy, animal. All  

other count nouns, including those denoting locations (beach, kitchen), single actions 

(kiss, help), events (lunch, party), person roles (doctor, brother), natural phenomena (sky, 

snow), temporal entities (morning, day), parts of objects (button), quantities (drop), and 

material (wood), were grouped together and dubbed XBLOCS. Excluding words that can 

belong to more than one category, the mean proportion of nouns in the vocabulary of the 

children stood at 65%, including a sizeable component (one third of all count nouns) that 

did not refer to basic level objects. 

Word Type                                                      Mean Proportion (%) 

Nouns 
   count nouns 
      BLOCS 
      XBLOCS 
   proper nouns 
   mass nouns 
Dual categorya 
Verbs 
Other 

 
 

36 
18 

65 
54 
 
 
4 
7 

6 
10 
19 

a. Dual category items are words that can belong to more than one category 
(e.g., drink, which can function as either a noun or a verb). 
 

 
Table 12: Mean Proportion of Word Types in Productive Vocabularies  

at 20 months (based on Nelson et al. (1993: 70)) 
 
 
Nouns not only predominate in the period of first words but also in the period of 

the vocabulary spurt, which is commonly characterized by an accelerated rate of noun 

learning (Goldfield & Reznick, 1990; Bates et al., 1994). 
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Logically, early lexical acquisition in general, and the primacy of nouns in 

particular, are attributable to child factors, environmental factors, or a combination of the 

two. Those who focus on child factors include constraint theorists who propose that the 

task of word learning is simplified by the application of internal linguistic constraints. 

Early constraints make noun mapping likely. For example, according to the whole object 

constraint, children initially assume that all words refer to objects and that they refer to 

the whole object, rather than its parts, attributes, motion, temporary state or other 

associated properties (Markman, 1987). Others argue for the child's application of 

principles rather than absolute constraints. Principle theorists suggest that lexical 

principles are learned to a great extent, hence both child and environmental factors play a 

role. They view lexical principles essentially as strategies that effectively restrict the 

search space for the task of word-to-referent mapping (Golinkoff et al., 1994). Similar to 

the whole object constraint, the principle of object scope (Golinkoff et al., 1994) posits 

that words label whole objects. Upon hearing a novel word and witnessing an unnamed 

object in a novel event, children using this principle would likely assume that the novel 

word refers to the object and not the event. 

Gentner’s explanation of the early primacy of nouns is based on semantic 

considerations, particularly the idea that the referents of nouns tend to have perceptual 

correlates that are comparatively easy to identify and are therefore more ‘accessible’ to 

children than those of verbs. In contrast, verbs and other predicates are claimed to have a 

less transparent relationship with the perceptual world. To illustrate this, Gentner takes 

the example of a bottle floating down a stream into a cave. Although all languages pick 

out the bottle as a salient component of the situation and use a single word or phrase to 
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refer to it, there are differences in how the movement is encoded. Whereas English 

encodes it with the help of a verb and a preposition (e.g., floated into the cave), Spanish 

uses two verbs and a preposition (e.g., entró en la cueva, flotando).19 Gentner takes this 

as evidence that the types of meanings encoded by verbs are not so obviously ‘packaged’  

as those of nouns, which makes them correspondingly more difficult to acquire. 

The plausibility of Gentner’s explanation of the early preference of nouns over 

verbs is further supported by the fact that this preference cannot be attributed to other 

factors that are likely to be relevant (Gentner 1982). 

For example, the primacy of nouns cannot be attributed to inflectional factors 

(e.g., the fact that in English more verbs than nouns have irregular inflections and 

therefore do not present the child with a single, fixed root). This is because there is also 

an early preference for nouns in Mandarin Chinese, in which neither verbs nor nouns are 

inflected, as well as in Turkish, which exhibits heavy but regular inflection on both verbs 

and nouns. 

It is likewise unlikely that word order is the crucial factor. While nouns can 

appear sentence-finally in English (this being a highly salient position in the sentence for 

the child), they normally do not in Japanese, which is uniformly verb-final. 

Gentner also claimed that the early emergence of nouns could not be attributed to 

frequency effects. Relying on data from adult-to-adult speech, she noted that nouns are 

less frequent than either verbs or prepositions and that among the 100 most frequent 

words in English, 20 are verbs and only 6 are nouns (1982:316-17). This claim has been 

supported by other researchers (e.g., Goldfield 1993; Au et al., 1994). For example, 

Goldfield examined the frequency of nouns and verbs in 17-minute speech sampling 
                                                   
19 For detailed discussion of this phenomenon, see Talmy 1985. 
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involving 12 one-year-old children and their mothers in situations involving playing with 

toys and play with each other (tickling, peek boo, and so forth). She reported that there is 

an overall frequency advantage of verbs (9.67 tokens per minute during play with toys vs. 

7.01 tokens per minute for nouns). 

 Generally, the evidence presented above for the primacy of nouns in many 

different languages can plausibly be interpreted as a strong evidence of children’s 

sensitivity to objects (people and things) in the world, which in turn supports using these 

objects as cues to some linguistic knowledge as maintained by semantic bootstrapping.  

4.3 Distr ibutional Cues 

By eight months, infants are sensitive to statistical properties of the input (Saffran 

et al., 1996a) and by 9 months, they are presumably integrating these two cues. The study 

by Saffran et al. (1996a) has drawn attention to information that infants can extract from 

speech on the basis of distributional cues alone. Saffran et al. reasoned that because 

words can be defined as units of sound which consistently co-occur, noting the likelihood 

of one syllable following another could provide a reliable strategy for segmenting words. 

For example, the two-word string prettybaby consists of four syllables: pre, ty, bay, and 

by. The first two syllables (pre and ty) consistently appear together because they form a 

word. Likewise, the latter two syllables (bay and by) also tend to occur together. 

However, the second and third syllables (ty and bay) occur together relatively rarely. 

Across a corpus of English, the syllable ty follows the syllable pre more frequently than 

the syllable bay follows the syllable ty, because many different words can follow the 

word pretty (i.e. pretty flower), but only a few syllables can follow pre. This greater 
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predictability of word internal syllables than syllables spanning word boundaries may be 

helpful in discovering word boundaries. 

Still, noting co-occurrences between syllables will not provide a sufficient cue to 

accurately segment the speech stream. For instance, if infants were to segment the input 

simply by noting co-occurrences between syllables, they would be misled to treat  

commonly occurring syllable pairs, such as the.dog, as words. Therefore, Saffran et al. 

(1996a) proposed that besides tracking the likelihood of one particular syllable following 

any other particular syllable, infants also track the baseline frequency of the first syllable 

in the syllable pair. This parsing strategy can be formalized by a statistical relationship: 

Transitional Probability (= Conditional Probability), where T.P. = (frequency of Y given 

X)/ (frequency of X). Thus, frequently occurring words such as the.dog will not be 

mistaken as a word because the also occurs before many other words.   

Aslin et al. (1998) showed that infants respond to transitional probabilities as 

opposed to simple co-occurrences between syllables. The idea of tracking the probability 

of one phone following another to detect word boundaries is not new (Harris, 1951; 

Hayes & Clark, 1970). However, Saffran et al. (1996a) first showed that statistics are a 

psychologically plausible means for infants to begin to segment words. They familiarized 

8-month olds with a 2-minute stream of an artificial language containing 4 tri-syllabic 

nonsense words: pabiku, tibudo, golatu, and daropi. No acoustic cues to word boundaries 

were present in the speech stream. Only the distributional properties of the sequences of 

syllables provided cues to the location of word boundaries. After familiarization, the 

infants were tested for their listening preferences to words versus part-words (tri-syllabic  

sequences composed of the last syllable of a word and the first two syllables of another 
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word, based on the nonsense words mentioned above, tudaro is a part-word). The infants 

listened significantly longer to the part-words, indicating they can segment the speech 

stream based on statistics alone. 

Saffran et al. (1996) exposed children to a two-minute stream of synthesized 

speech containing no cues to word boundaries other than the transitional probabilities 

between syllables. The continuous stream of speech was constructed by concatenating 

synthesized consonant-vowel (CV) syllables. Saffran et al. (1996) found that infants 

listened reliably longer towards part-words, indicating that they extracted words defined 

only by the statistical nature of the speech stream. 

Johnson & Jusczyk (2001) provide further evidence. As in Saffran et al. (1996a), J 

& J found that infants listened significantly longer to the novel part-words, demonstrating 

their ability to use statistical cues to discover word boundaries in continuous speech. 

Infants performed nearly identically in this experiment as they did in both the analogous  

synthesized speech (Saffran  et  al., 1996a) and tone segmentation (Saffran et al., 1999) 

tasks.  

Learning of the statistical regularities of the language is also suggested by the 

observation that 9-month-old children listen longer to words that include frequent 

phonetic sequences than to legal but rare phonetic sequences (Jusczyk, Luce, & Charles-

Luce, 1994). 

By 9 months, young children prefer to listen to syllables that obey phonotactic 

rules than to illegal syllables (Friederici & Wessels, 1993; Jusczyk et al., 1993) and they 

also exhibit a preference for high over low probability phonotactic sequences (Jusczyk et 

al., 1994). When asked to judge how much nonwords are wordlike (phonological 



 71 

goodness judgment), adults rate nonwords with high transitional probabilities between 

phonemes as more wordlike than nonwords with low transitional probabilities (e. g., 

Frisch et al., 2000; Vitevich et al., 1997). 

Similar studies using either tone or visual sequences as stimuli revealed that 

infants’  ability to track transitional probabilities is not limited to linguistic stimuli (Aslin 

et al., 2001; Saffran et al., 1999). 

However, there is evidence that 8-month olds show more sensitivity to speech 

cues than to distributional cues. In an experiment on sixteen 8-month-olds from 

monolingual English-speaking homes (5 males, 11 females; mean age 35 weeks 2 days; 

range 33:5 days to 36:5), Johnson and Jusczyk (2001) pitted two competing cues to word 

segmentation against each other: stress and statistics. In segmenting the familiarization 

sequence, the infants relied more heavily on the stress cue to indicate word onsets than on 

the statistical cue relating to the transitional probabilities of successive syllables. 

Consequently, it appears that although statistical cues are sufficient to segment a simple 

arti ficial language, 8-month olds weigh speech cues such as stress more heavily.  

4.4 The Frequency Effect 

 The frequency effect is one of the earliest and most robust effects in 

psycholinguistics. Frequency plays a role in both the auditory and visual modalities, and 

in both comprehension and production (Jurafsky 2003). 

 The earliest work studying frequency effects in comprehension seems to have 

been by Howes and Solomon (1951). They displayed words, a word at a time for longer 

and longer durations, to adult subjects who were asked to recognize them. They showed 

that the log frequency of a word (as computed from corpora of over 4 million words) 
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correlated highly with the mean time subjects took to recognize the word; more frequent 

words were recognized with shorter presentations. Later, the naming paradigm, in which 

subjects were read a word out loud, was used to show that high-frequency words are 

named more rapidly than low-frequency words (Forster and Chambers 1973). In the 

lexical decision paradigm, in which subjects decide if a string of letters presented visually 

to them is a word or not, it has also been shown that lexical decisions about high-

frequency words are made faster than decisions about low-frequency words (Rubenstein 

et al., 1970; Whaley 1978; Balota and Chumbley 1984). 

 Similarly robust results have been found for auditory word recognition. Howes 

(1957) first found results with speech that were similar to his earlier results with vision: 

when presented with high- and low-frequency words immersed in noise, subjects were 

better at identifying high- than low-frequency ones. In an extension to this experiment, 

Savin (1963) found that when subjects made recognition errors, they responded with 

words that were higher in frequency than the words that were presented. Grosjean (1980) 

used the gating paradigm, in which subjects hear more and more of the waveform of a 

spoken word, to show that high-frequency words are recognized earlier (i.e., given less of 

the speech waveform) than low-frequency words. Tyler (1984) showed the same results 

for Dutch. 

The effects of lexical frequency on production have also been reported in a 

number of studies. In two separate studies of the effect of lexical frequency on 

phonological reduction (number of deleted or reduced phonemes), Fidelholz (1975) and 

Hooper (1976) showed that frequent words such as forget are more likely to have 
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lexically reduced vowels (e.g., [f��]) than less frequent words such as forgo (e.g., [f��]) 

see Table13. 

Reduced word [f��] Full vowel [f��] 

Word Count per million Word Count per million 

Forget 148 forefend <1 

Forgive 40 forgo <1 

 
Table 13: Lexically reduced vowels in high-frequency words. (After Fidelholz 1975) 

 

While these studies are suggestive of an effect of frequency on a word’s 

phonological makeup, they do not confirm that the effect of frequency on lexical 

production is on-line and productive. It could be that frequent words have reduced vowels 

and fewer phonemes because of some diachronic fact statistically reflected in the lexicon 

that is only related to on-line production in a complex and indirect way (Jurafsky 2003: 

45). 

To show that frequency plays an active and on-line role in language production, a 

number of studies have examined whether frequency dynamically affects phonological 

variation in production. Bybee (2000) examined word-final /t/ and /d/ in a corpus of 

spoken Chicago English. After excluding the extremely high frequency words just, went, 

and and, she classified the remaining 2,000 word tokens into two bins, high-frequency 

(defined as more than 35 per million in the Brown corpus) and low-frequency (fewer than 

35 per million.) She showed that final /t/ and /d/ deletion rates were greater in high-

frequency words (54.5%) than in low-frequency words (34.3%). Hay (2000) has shown 

that for complex words, the ratio of the frequency of the derived word and the frequency 

of its base is an important predicator of processing time. 
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Gregory et al. (2000), Jurafsky et al. (2001), and Bell et al. (2001) provided 

further evidence that these frequency effects on reduction are on-line, by controlling for a 

wide variety of contextual factors, and also by investigating the effect of frequency on a 

word’s duration, in addition to its phonological reduction. They examined the duration of 

words and the percentage of final-consonant deletion in a 38,000-word phonetically 

transcribed sub-corpus from the Switchboard corpus of American English telephone 

conversations (Godfrey et al. 1992; Greenberg et al. 1996). They first confirmed Bybee’s 

results by analyzing 2,042 word tokens whose full pronunciation ended in /t/ or /d/. After 

controlling for contextual factors, they found that these final obstruents are more likely to 

be deleted in more frequent words. High-frequency words were 2.0 times more likely to 

have deleted final /t/ or /d/ than low-frequency words.  

Gregory et al. (2000) and Jurafsky et al. (2001) also investigated the effects of 

frequency on word duration, using 1,1412 monosyllabic word tokens ending in /t/ or /d/. 

They found a strong effect of word frequency on duration. Overall, high-frequency words 

were 18% shorter than low-frequency words. 

Pan and Hirschberg (2000) have also shown that conditional bigram probability 

correlates highly with location of pitch accent; specifically, pitch accent is more likely to 

occur on low-probability words. Gregory (2001) has extended this result by showing that 

conditional probability given previous and following words is a significant predictor of 

pitch accent even after controlling for other contextual factors such as position in the 

intonation phrase, part of speech, and number of syllables.   

Oldfield and Wingfield (1965), for example, showed an on-line effect of word 

frequency on latency (the time to start producing a word) of picture-naming times. 
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Presenting subjects with pictures, they found that pictures with high-frequency names 

were named faster than pictures with low-frequency names. Wingfield (1968) showed 

that this effect must be caused by word frequency rather than the frequency of pictured 

objects, by showing that the effect was not replicated when subjects were asked to 

recognize but not verbalize picture names. These results were also reported for Dutch 

(Jescheniak and Levelt 1994).  

A number of experiments have shown that frequency plays a role in 

disambiguation. For example, in an experiment by Simpson and Burgess (1985), subjects 

were first presented with an ambiguous prime word (homograph) that had a more 

frequent sense and a less frequent sense. Subjects then performed lexical decision on 

targets that were associated with either the more frequent or the less frequent meaning of 

the homograph prime. Simpson and Burgess found that the more frequent meaning of the 

homograph caused faster response latencies to related associates, suggesting that the 

more frequent meaning is retrieved more quickly. Evidence for the use of word sense 

frequency in comprehension has also been reported crosslinguistically – for example, in 

Chinese (Li and Yip 1996). 

MacDonald (1993) studied the effect of word-pair (joint) frequencies on 

comprehension. Investigating the process of a noun followed by a word that is ambiguous 

between a noun and verb, such as the pair miracle cures, she hypothesized that if the 

noun-noun pair was frequent (like miracle cures), its interpretation would be biased 

toward the noun reading of the second word. She predicted no such bias for infrequent 

noun-noun pairs (like shrine cures). She confirmed this hypothesis by looking at reading 

time just after the ambiguous word in sentences that were otherwise biased toward a verb 
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reading. For example, subjects spent more time reading the word people in (30) than in 

(29), since the frequent noun-noun phrase in (30) biases the reader toward the noun 

reading of cures, whereas the word people is compatible only with the verb reading. 

(29) The doctor refused to believe that the shrine cures people of many fatal 

diseases… 

(30) The doctor refused to believe that the miracle cures people of many fatal 

diseases… 

It has also been shown that the frequency of subcategorization frames plays an on-line 

role in the disambiguation of various syntactic ambiguities. For example, the verbs 

remember and suspect are both subcategorized for either a direct object NP or a sentential 

complement S, as in (31)-(34) (from Jurafsky 2003:53): 

(31) The doctor remembered [NP the idea]. 

(32) The doctor remembered [S that the idea had already been proposed]. 

(33) The doctor suspected [NP the idea]. 

(34) The doctor suspected [S that the idea would not turn out to work]. 

While both verbs allow both subcategorization frames, they do so with different 

frequencies. Remembered is more frequently used with an NP complement, while 

suspected is more frequently used with a sentential complement. These frequencies can 

be computed either from a parsed or transitivity-coded corpus (Merlo 1994; Roland and 

Jurafsky 1998) or by asking subjects to write sentences using the verbs (Connine et al. 

1984; Garnsey et al. 1997). 

 For example, Trueswell, Tanenhaus, and Kello (1993) tested this effect in an 

experiment based on cross-modal naming (i.e., the stimulus is auditory while the target is 
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orthographic). Subjects heard a sentence prefix ending in either an S-bias verb (The old 

man suspected…) or an NP-bias verb (The old man remembered…). They then had to 

read out loud (“name” ) the word him. Previous research had shown that naming latencies 

are longer when the word being read is an ungrammatical or unexpected continuation. In 

Trueswell et al.’s study, naming latency to him was longer after S-bias verbs (The old 

man suspected …him) than after NP-bias verbs (The old man remembered …him). This 

suggests that subjects preferred the more frequent frame of the verb and were surprised 

when the preference was overturned, causing longer naming latencies. 

 MacDonald (1994) showed that the effect of subcategorization frame frequency 

also plays a role in resolving main clause/relative clause ambiguities in garden-path 

sentences, as first pointed out by Bever’s (1970) famous example (The horse raced past 

the barn fell). MacDonald suggested that the subcategorization frequencies proposed by 

earlier researchers could play a role in explaining processing difficulties in main 

verb/reduced relative ambiguities. Her test materials used transitive-bias verbs like push 

and intransitive-bias verbs like move, in sentences like the following: 

(35) The rancher could see that the nervous cattle pushed into the crowded pen 

were afraid of the cowboys. 

(36) The rancher could see that the nervous cattle moved into the crowded pen 

were afraid of the cowboys. 

MacDonald found that corrected reading times in the disambiguation region were afraid 

were longer for intransitive-bias verbs like move than transitive-bias verbs like push. 

 In this section I have summarized some of the psycholinguistic research on 

learners’  sensitivity to a set of prosodic, acoustic, semantic, and distributional cues that 
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provided some strong evidence that some elements are cues by virtue of their intrinsic 

(perceptual) properties. Below I show how some of these cues can be distributionally 

learned from a given corpus, and how they can be used in cue-based distributional 

learning. 
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Chapter  5 

Foundations of Cue-Based Learning 

It has been assumed so far that (i) there are some elements that are intrinsically cues by 

virtue of some properties that make them distinctly marked in the input, and that (ii) 

learners are sensitive to these elements. Psycholinguistic evidence has shown that this is 

the case. However, it is maintained here that for some of these cues to be efficiently used 

in a distributional learner, they should be defined and learned according to some criteria. 

In this chapter, I first present two procedures for cue extraction. The first is semantic and 

the other is purely distributional. The main idea in both procedures is to extract, 

according to some criterion, the smallest subset of elements in the input that provide 

information about the distributional properties of the maximum number of elements in 

the input. The criterion used here for selecting this subset is such that every element in 

the input occurs at least once with at least one element in this subset. Finding this subset 

is the core of the model of cue-based learning presented in this dissertation. Using the 

cues extracted by the cue identification procedures, I then present two procedures for how 

to establish distributional similarity, which provides the basis of the categorization and 

subcategorization algorithms. 

5.1 Semantic Cue Extraction 

The logic behind a semantic procedure for cue extraction is rooted in the core of 

semantic bootstrapping, i.e., nouns and verbs typically refer to distinct, identifiable 

semantic classes in the input. Accordingly, people and physical objects are referred to 

with nouns; activities and changes of state with verbs; properties and colors with 

adjectives, and so on (Croft 1991; Grimshaw 1981; Macnamara 1982; and Pinker 1984, 
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1994). It was mentioned in Section 4.2 above that children’s sensitivity to entities in the 

world has been highlighted by experiments on early lexical development that showed the 

primacy of nouns in the early stages of speech.  

The way this evidence is used in the semantic criterion for cue extraction is to 

find the smallest subset of nominal expressions, words that refer to people and things, in 

the input that is likely to provide information about the distributional properties of other 

elements in the input. In theory, these cues can be identified according to the criterion in 

(37a) and the procedure in (37b).  

(37) a. Semantic Cr iter ion for  Cue Extraction 
Let  

W ={ w1…wn} be the set of words in a corpus R,  
O = {o1,…, om}  be the subset of W that refer to objects in 
the world,  

Then  
Cues, K, are the smallest subset of O such that every word 
in { w1,…,wn} occurs at least once with at least one member 
in this subset.  

 
(37) b. Procedure for  Semantic Cue Extraction 

Function SUBSET(K,R) 
 K  := Ø; 

for  i := 0 to m do 
get the number of word types N in R; 
get the frequency of oi , f(oi) in R ;  
build a decreasing frequency profile F:= { f(oi) > f(oi+1) >…f(om)} ; 
get the number of words |wi -| that immediately precede oi ;  
get the number of words |wi+ | that immediately follow oi ; 
 Sumi := |wi-| + |wi+ | ;  

Sum_total := �
=1i

iSum ; 

if  Sum_total := �
=1i

iSum := N 

return K := { oi} ;  
else 
 repeat 

i := i +1; 

  until (Sum_total := �
+

=

ki

i
iSum

0

:= N); 

 return K := { oi,..,oi+k}   
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 To salvage this, we can seed the algorithm with knowledge about the smallest 

subset of the smallest subset of O, as defined in (37). Accordingly, the choice adopted 

here is to annotate in the input names of people and things, and the smallest subset of 

pronouns. How names are identified and annotated in the corpus is treated in detail in 

Chapter (6). The subset of pronouns, on the other hand, is limited to pronouns that could 

constitute single-word noun phrases (e.g., he, she, it, I, etc.), compared to other pronouns 

which can constitute single NPs or be part of a larger NP (e.g., her and his), and pronouns 

that are always part of a larger NP (e.g., my, your, etc.). It is assumed that the subset of 

pronouns that constitute single-word NPs are easier than other pronouns to identify in the 

input. No claim is made here regarding the accuracy or the psycholinguistic feasibility of 

this assumption.  

Once this subset has been established, it is then used by the learning mechanism 

to acquire knowledge about other elements in the corpus, which is consequently 

employed to garner further knowledge, and so on and so forth. The dynamics of this 

learning mechanism is detailed in Chapter (6). 

5.2 Distr ibutional Cue Extraction 

Given the difficulty and incompleteness of the semantic procedure for cue 

extraction, I propose in this section a purely distributional procedure for learning cues 

from the input, using only language-internal information.  

A first approximation to this procedure can make use of the frequency of certain 

elements or features in the input. Accordingly, a cue can be any member of the set of the 

highly frequent elements in the input. Consequently, function words, stress, and silence 

as indicated by utterance boundaries can be possible cues. Utterance boundaries are cues 
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by definition since they indicate the beginning and end of some constituents. Function 

words are highly frequent in the input, which, among other features, makes them stand 

out in the input. For that reason, some of the learning methods discussed in previous 

chapters have used these words as cues (e.g., Brent 1991, 1993, 1994; Mintz 1996, and 

Buchholz, 1998).  

However, detecting cues in accordance with this criterion has two disadvantages. 

The first, as previously discussed, is that these function words must be learned before 

they can be used as cues. Using them in this way results in the bootstrapping paradox, 

discussed above. The other is that applications that entertain this definition of cues 

usually resort to an arbitrary cut-off point to establish a list of highly frequent words. 

Mintz (1996), for example, made the cut-off point after the 200th most frequent word in 

the corpus used.20 This means that establishing the set of possible cues in these arbitrary 

and subjective terms is not expected to guarantee an objective and standard mechanism 

for cue detection. 

The alternative mechanism introduced here is based on the assumption that cues 

should be first learned by the learning algorithm. Cue learning will definitely benefit 

from the frequency effect, yet indirectly.  

Generally, highly frequent elements in the input should provide pieces of 

information about the distributional properties of a non-trivial subset of elements in the 

input. It is possible that every element in the input will occur at least once with at least 

one highly frequent element. Put together, these pieces then represent a summary of the 

distributional properties of the elements in the input language. What is needed then is a 

                                                   
20 Mintz used input corpora for 4 different children that were selected from the CHILDES database. The 
average number of utterances was 12,444. 
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subset of these frequent elements that carries information about every element in the 

input. This subset will be referred to as Category Cues to distinguish them from Frame 

Cues introduced later. In theory, the set of Category Cues can be defined as follows: 

(38) Definition of Category Cues (K) 
The set of Category Cues, K, is the smallest subset of the elements 
{k1,...,km} in a corpus R such that every element in R occurs at least 
once with at least one member in K.  

 
Depending on the level of learning pursued, an element in this subset can be a 

morphological or phonetic feature, a word, a tag, or a constituent.  

Assuming cues at the word level, this subset K can generally be identified using 

two different methods. The first method is to find the exact subset according to the 

following criterion: 

(39)  Distr ibutional Cue Extraction (1) 
Let W = { w1…wn}  be the set of word in a corpus R, 
for every word wi, extract the set of words, Si, that occur with wi, 
Then  
the set of Category Cues for a corpus R, KR, is such that 
KR ≡  {S1 �  S2 �  S3 � …�  Sn}  

 
However, finding such exact minimal subsets in general is known to be 

intractable (e.g., Hopcroft et al., 2001; Cormen et al., 1995: 916-986; and Mortello and 

Toth, 1990). This means that identifying cues according to (39) undermines the objective 

of using cues in learning. Consequently, what is introduced here is a method that 

approximates the set of possible cues K in a given corpus. 

The approximate method proposed here makes a direct use of the highly frequent 

words in a corpus on the assumption that these words would provide information about 

the distributional properties of other words in the corpus. Unlike (37), the method 

presented here takes the frequency of a word in a corpus as the main determinant of that 
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word being a cue in that corpus. The core of this method is to find the smallest subset of 

words in the corpus that co-occur with a number of words that converges to an order of 

the number of word types in that corpus. This method proceeds as follows.  

We start with building a decreasing frequency profile for all the words { w1,…,wn}  

in a corpus, R, where w1 is the first most frequent word in R, w2 the second most frequent, 

and so on. The set of cues is K = { w1,…,wm} , such that if we add up the number of words, 

X1, that co-occur with w1 and the number of words, X2, that co-occur with w2, until the m-

most frequent word, wm, the number of words [X1+X2+…+Xm] converges to an order, � , 

of n, where n is the number of word types in the corpus. In pseudo-code, this procedure is 

as follows: 

(40)  Procedure for  Distr ibutional Cue Extraction 
Function SUBSET(K,R) 

1. K  := Ø; 
2. for  i := 0 to n do; �  := (1,2,…); 
3. get the number of word types n in R; 
4. get the frequency of wi , f(wi) in R ;  
5. build a decreasing frequency profile F:= { f(wi) >  f(wi+1) >…f(wn)} ; 
6. get the number of words |wi -| that immediately precede wi ;  
7. get the number of words |wi+ | that immediately follow wi ; 
8.  Xi := |wi -| + |wi+ | ;  

9.  Xi_total := �
=1i

iX ; 

10.  if  Xi_total := �
=1i

iX := � n 

11.  return K := { wi} ;  
12.  else 
13.   repeat 
14.    i := i +1; 

15.   until  (Xi_total := �
+

=

ki

i
iX

0

>= � n, 

16.     Xi_total := �
−+

=

1)(

0

ki

i
iX < � n); 

17.  return K := { wi,..,wi+k}   
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For example, if the is the most frequent word in a hypothetical corpus that contains 1000 

word types, and the number of words that co-occur with the is 1000, then the is 

considered the first-order cue set for this corpus. If of and to, for example, are the second 

and third most frequent words in this corpus, respectively, and the number of words that 

co-occur with of and to is 600 and 400, respectively, then the second-order cue set for this 

corpus is { the, for, to} , and so on and so forth. Of course, this is an ideal scenario, since 

in most cases this equivalence is not possible. Consequently, the (15) and (16) lines in the 

pseudo-code are meant to adjust the number of words, Xi_total, that co-occur with the 

members of the cue set. According to (15) and (16), Xi_total can either be greater than or 

equal to the number of word types in the corpus such that if we remove the number of 

words that co-occur with the last member in the set from Xi_total, Xi_total will be smaller 

than the number of word types in the corpus. 

To illustrate with a real corpus, this procedure was run on a random corpus that 

contained �  110,000 tokens and �  12350 words. Table 14 shows the 20 most frequent 

words in the corpus and the number of words that co-occurred with each word. It is clear 

from Table 14 that the sum of the words that co-occur with the first four most frequent 

words (i.e., 12353) is almost the same as the first order of the number of word types in 

this random corpus (i.e., 12350). This means that the first-order approximation of the cue 

set for this corpus is { the, of, and, to} . By the same token, the sum of the words that co-

occur with the first twenty most frequent words (i.e., 24954) is close to the second order 

of the number of word types in the corpus (i.e., 24706). This means that the second-order 

approximation of the cue set for the same corpus is { the, of, and, to, in, a, that, is, was, it, 

for, as, on, this, by, with, not, be, but, he} . It is expected that higher orders of 
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approximation should give more fine-grained information about the distributional 

properties of the words in the corpus. 

Rank Word Frequency Co-occ. 
1 the 8705 4010 
2 of 4220 3000 
3 and 3055 3110 
4 to 3049 2233 
  Sum[1-4] 12353 

 
5 in 2629 2030 
6 a 2190 1610 
7 that 1394 1105 
8 is 1160 883 
9 was 1090 913 
10 it 969 476 
11 for 967 943 
12 as 847 705 
13 on 818 741 
14 this 675 456 
15 by 664 714 
16 with 613 646 
17 not 586 377 
18 be 548 405 
19 but 522 283 
20 he 522 314 
  Sum[1-20] 24954 

 
 

Table 14: The 20 most frequent words in a random corpus  
in a descending frequency order 

Similar approximations can be established using phonemes, stress, etc. Once a cue 

approximation has been established, it can be used accordingly in different tasks such as 

segmentation, categorization, constituency detection, and frame identification.  

The way this set of cues is used in this dissertation is that it provides the 

coordinates for the distribution of words in the corpus. This means that the distributional 

behavior of a word is captured in terms of its co-occurrence with the members of the cue 
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set. Words can then be categorized according to the strength of their association with 

these cues, as shown in the following section. 

5.3 Cued Distr ibutional Similar ity 

The central concepts in distributional learning are those of distribution, 

equivalence, and substitutability. These and other related concepts are defined as follows 

(Harris, 1951): 

 (41) Distr ibution  

The distribution of an element is the total of all environments in 

which it occurs, i.e., the sum of all the (different) positions (or 

occurrences) of an element relative to the occurrence of other 

elements. 
 

(42) Equivalence  

Two utterances or features will be said to be linguistically, 

descriptively, or distributionally equivalent if they are identical as 

to their linguistic elements and the distributional relations among 

these elements.  
 

(43) Substitutability 

If all occurrences of word A can be replaced by word B, without 

loss of syntactic well-formedness, then they share the same 

syntactic category 
 

(44) Substitution Class 

A substitution class is the class of elements which are free variants 

of each other. 
 

 (45) Environment 

The environment of an element E consists of the elements, within 

an utterance, before, after, and simultaneous with E.  
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(46) Utterance 

An utterance is any stretch of talk, by one person, before and after 

which there is silence on the part of the person. 
 

An ideal distributional learner should reach word classification and constituency 

decisions such that all the words in a particular class will have identical distribution. 

Accordingly, considerable descriptive economy would be achieved if we could replace 

statements about individual elements with identical distributions by a single statement, 

applying to a whole set of distributionally similar elements (Harris, 1951: 243). However, 

such a learner is not distributionally realizable because elements which have precisely the 

same total environments are not frequently available in a given corpus. This means, 

Harris (1951: 244) argues, that “ if we seek to form classes of words such that all the 

words in a particular class will have identical distributions, we will frequently achieve 

little successes” .  

Given this, Harris proposes what is called here an Approximate Distributional 

Learner (ADL). The main idea in a distributional approximation procedure is the 

grouping together of elements which are identical in respect to some stated large fraction 

of all their environments. This means grouping takes place under distributional similarity 

and not equivalence. To perform this approximation, we take each element and state all 

of its environments within the corpus, where the environment is taken to be the whole 

utterance in which it occurs. We then select one element, and match its range of 

environments with that of the other element. We do not expect to find many cases of 

identical ranges, but decide instead upon certain conditions; if an element satisfies these 

conditions, it will be assigned to the class of our originally selected element. 
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The conditions may vary with the language system and with our purposes. They 

may be as crude as requiring that 80% of the environments of the one element should be 

ones in which the other also occurs (Harris, 1951). In many languages, the case might be 

that some classes of words are more easily set up first, and others being set up with their 

aid. Accordingly, we begin with these most frequently occurring elements whose number 

seems to be small.  

The results of each classification can be used in all subsequent classifications. If 

two elements e1 and e2 had been previously assigned to one class E, we would henceforth 

replace them by that class mark each time they occur. In effect, the occurrence of each 

class is defined in respect to the occurrence of every other class, rather than defining each 

element in respect to the occurrence of every other element. 

To summarize, a Harrisian approximate distributional learner has the following 

properties: 

(47) Properties of an Approximate Distributional Learner (ADL) 

a. Grammatical categories/constituents can be discovered on the basis of 

distributional relations among linguistic elements. 

b. The distributional similarity among elements can be approximated in 

respect to some stated large fraction of their distributions. 

c. The occurrence of each class is defined with respect to the occurrence 

of every other class. 

d. The order of discovery may be language-specific. 
 

Below, I show how this basic learner can be modified to constitute the core of a 

cue-based distributional learner. Properties (a) and (d) above are assumed here without 

further discussion. The other properties are further accentuated in terms of a 

distributional definition of cues. 
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Given the two procedures for cue extraction introduced above, the distributional 

similarity among elements can now be approximated in terms of their cued distributions. 

The cued distribution of a linguistic element is captured in terms of its co-occurrence 

with one or more cues in the set of Category Cues. That is, two elements are 

distributionally similar if they have similar cued distributions. These distributions are 

used in the two proposed models in the following manner. 

5.3.1 Relative Frequency 

In the first model of cue-based learning which is based on the semantic procedure 

for cue learning, the distributional similarity of two elements is approximated in terms of 

their relative frequency in the same cued bigrams. The intuition behind this measure is 

that: If an element E occurs in context t more than half of the times E occurs in the 

corpus, t most probably represents the distributional signature of E. So, if two elements 

occur more than 50% of the times in the same cued bigram, these two elements are most 

likely to be distributionally similar. In pseudo-code, this intuition works as follows: 

(48) Cue-Based Distr ibutional Similar ity 

FUNCTION D-SIM(Ei, Ej) 
for  i := 1 to n 

get frequency f(Ei), f(Ej), …f(En) ; 
for  C∈K, K := { Cues}  ;  

C immediately precedes Ei ;  
C immediately precedes Ej ; 
get frequency f(C, Ei) ; 
get frequency f(C, Ej) ; 

if 5.0
)(

),(
>

i

i

Ef

ECf
, 5.0

)(

),(
>

j

j

Ef

ECf
; 

then D-SIM(Ei, Ej) ; 
else 
fail. 
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5.3.2 Mutual I nformation 

 In the second model, which is based on the distributional procedure for learning 

cues, distributional similarity is captured in term of the information-theoretic statistic of 

Mutual Information (MI). MI has been defined in two different yet related ways. The first 

definition interprets MI as the amount of information provided by the occurrence of one 

event, y, about the occurrence of another event, x (Fano 1961: 27). Interpreted this way, 

the information provided by y about x consists of changing the probability of x from the a 

priori value P(x) before the occurrence of y, to the a posterior value P(x|y), given that y 

has occurred. The measure of change of probability is the logarithm of the ratio of the a 

posteriori probability and the a priori probability. Thus, the mutual information between 

x and y, which is sometimes referred to as point-wise mutual information, is defined as 

follows (Fano 1961: 27-28; Reza 1961: 140; and Jelinek 1968: 150): 

(49)  
)(

)|(
log);( 2 xP

yxP
yxI =  
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),(
log2 yPxP

yxP=  

where P(x,y) is the probability of observing x and y together, P(x) and P(y) are the 

probabilities of observing x and y anywhere in the corpus. If x and y tend to occur in 

conjunction, their mutual information will be high. If they are not related and co-occur 

only by chance, their mutual information will be zero. Finally, i f the two events tend to 

‘avoid’  each other, their mutual information will be negative.  
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  Another interpretation of mutual information can be given by obtaining the 

average of the mutual information per event pairs (Fano 1961: 46; Reza 1961: 105; and 

Cover and Thomas, 1991: 5, 18). Thus, for two random variables, X and Y, the average 

value of mutual information provided by Y about X is defined as  

 (50) I(X;Y) );(),(
,

yxIyxp
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The average mutual information in (50) can be re-written in terms of entropy. Entropy is 

the average uncertainty of a single random variable, X, and is defined by (51). Mutual 

information in these terms then is the reduction in uncertainty of one random variable, X, 

due to knowing about another, Y, (52). 

(51) H(X)  )(log)( 2 xpxp�−=  

(52) I(X;Y) = H(X) – H(X|Y) 

Unlike point-wise mutual information, average mutual information is always a non-

negative number.21 

These two forms of mutual information, both in (49) and (50-52), have been 

applied successfully to some problems in natural language processing. Research in 

speech recognition (Jelinek 1985), noun classification (Hindle 1988), constituent 

boundary identification (Magerman and Marcus 1990), phrase-structure grammars (Clark 

2001), and morphological analysis (Cavar et al. 2004), among other areas, have shown 

that the mutual information statistic provides a wealth of information for solving these 

and other problems in natural language processing. Magerman and Marcus (1990) and 

                                                   
21 For further discussion of the mathematical properties of Mutual Information, see the references 
mentioned in this section. 
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Clark (2001), for example, have shown that mutual information between words that 

belong to the same constituent is higher than that between words that do not make up a 

constituent. Using this criterion, true constituents can be distinguished from distituents, 

and consequently true phrase boundaries can be easily identified. 

However, two interrelated issues have been raised regarding the difference 

between these two forms of mutual information and how they are used in the 

computational-linguistic research (e.g., Manning and Schütze 2003: 178-183). The first is 

that, Manning and Schütze argue, mutual information should be defined as holding 

between random variables, as defined by average mutual information, not values of 

random variables, as defined by point-wise mutual information. The other issue is that 

point-wise mutual information is biased in favor of low-frequency events (Manning and 

Schütze 2003: 182; Fontenelle et al. 1994: 72). Consequently, other things being equal, 

bigrams composed of low-frequency words, for example, will receive a higher mutual 

information score than bigrams composed of high-frequency words. That is the opposite 

of what we would want a good measure to do since higher frequency means more 

evidence and we would prefer a higher rank for bigrams for whose interestingness we 

have more evidence (Manning and Schütze 2003: 182). 

As far as this dissertation is concerned, these two issues do not present any 

problems to how mutual information is used in the proposed cue-based model, or the 

results that have been achieved based on it. This is due to two reasons. The first is that 

mutual information is used to measure the strength of association between a set of cues 

and other elements in a corpus. Given that these cues are a subset of high-frequency 

elements in the corpus, each of the bigrams of interest in cue-based learning has at least 
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one high-frequency element as a member. Consequently, the issue of the bias to low-

frequency events is obviated. The other reason is that the distributional similarity 

between elements is not established on the basis of the mutual information between one 

element and another. Rather it is based on the aggregate mutual information between an 

element and all the cues with which it co-occurs. In other words, the decision of 

distributional similarity is not based on rare or single events. As a by-product of using 

mutual information this way, the bias in favor of low frequency event should not affect 

the result in any significant manner. 

Having said that, only the point-wise mutual information as given in (49) was 

implemented in this dissertation. It is expected that the same results can be attained using 

either form of mutual information in (49-52), or any other association measure.22 

However, the plausibility of this claim is not tested in this study and is left for future 

investigation.  

To summarize, the way point-wise mutual information is used here is to measure 

the distributional similarity of linguistic elements in terms of their mutual information 

with cues identified by the distributional procedure in (38). Using mutual information this 

way would result in a more gradient and probabilistic model of distributional learning 

than the relative frequency method in (48). The details of how this measure is 

implemented in cue-based learning are given in Chapter (7). 

 

 

 

 
                                                   
22 See Oakes 1998 for a review of these measures. 
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5.4 Cue-Based Distr ibutional Frame Identification 

The frame identification component in the two models is subject to the following 

restrictions:  

(i) There is no predefined set of possible frames.  

(ii) The learning algorithms are left to learn what is an appropriate frame for a 

verb based on distributional regularities in the input.  

(iii) Only cued contexts are visible to the frame identification procedure. 

In more specific terms, no a priori knowledge is given to the learning mechanism 

regarding the number and structure of possible frames. Rather, these two pieces of frame 

information should be learned from the contexts where distributional similarity has been 

established in accordance with the two procedures in the previous section. In other words, 

the only information that is accessible or visible to the frame identification procedure is 

that information yielded by any of the two procedures in subsections (2.3.1) and (2.3.2). 

For this enterprise to be efficient and consistent, it should build on a cue-based 

distributional criterion of what constitutes a subcategorization frame.  

The criterion introduced here for frame identification is a trivial specification of 

the distributional cue-based criterion for cue extraction introduced in (38) above. 

Accordingly, the set of possible frames in a given input is expected to be a subset of the 

contexts where predicates, in general, and verbs, in particular, occur. The set of possible 

frame cues can then be approximated as follows: 

(53) Frame Cues 
Let P = { p1,…, pn}  be the set of possible predicates in a corpus R, 
Let C = { c1,…,cm}  be the set of contexts where the members of P 
occur, then the set of possible frames in R is the smallest subset, 
Cf, of C such that every predicate in P occurs at least once in at 
least one context in Cf. 

 



 96 

This set of cues can then be extracted using either of the two methods in (39) and (40), as 

will be shown in the following chapters. 

5.5 Conclusion 

 This chapter introduced the formal foundations of a distributional cue-based 

model of learning. Cues and frames have been formally defined. In addition, criteria and 

procedures have been presented for identifying two sets of cues in a given corpus. The 

first set was based on the semantic properties of some elements in the input that make 

them easy to identify. The other set of cues was purely based on the distributional 

properties of high-frequency words in a corpus. It has been proposed that each of these 

sets of cues can be used to realize a cue-based learner. The details of these two learners 

are given in the following chapters. 
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Chapter  6 

Implementation [1]: 

A Semantically Bootstrapped Cue-Based Learner (CBL -1) 

6.0 An Outline 

This chapter presents a Semantically Bootstrapped Cue-based Learner (CBL-1, 

henceforth). This learner is based on two main learning procedures. The first is the 

Semantic Procedure for Cue Extraction, and the other is the Cue-Based Distributional 

Similarity Procedure using relative frequency. This learner is semantically bootstrapped, 

yet it learns distributionally. This means that semantic cues are only used to update the 

initial state (S0) of the learner to one intermediate learning state (S1). Once the learner is 

in this intermediate state, semantic cues are not triggered any more, and it proceeds from 

one state to the other based on the distributional properties of the input, until it reaches 

the final state (Sn). This final state represents learning some grammar of the input 

language. This learner is diagrammed as follows: 

 
      Semantic       S1           Distributional       S2…Sn-1   

         S0 (Corpus)           Cues                  Induction       Sn (Grammar) 
                Rules 
 

Figure 3: A Semantically Bootstrapped Cue-Based Learner (CBL-1) 
 

This system is fleshed out with procedures for NP detection and verb identification which 

constitute the basic information required for the automatic acquisition of verbal 

subcategorization frames. 

CBL-1 is data driven and bootstraps from semantic cues that can be easily 

identified in the input without much a priori linguistic knowledge. It assumes an input 

marked for word and sentence boundaries, and is minimally annotated for nominal 
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expressions, which represent the seed knowledge for the learning procedures. These 

expressions are limited to a subset of unambiguous pronouns (i.e., I, he, she, it, we, they, 

me, him, us, and them) and names of things and people in the corpus. Names were 

orthographically annotated in the original corpus by capitalizing their first letter. Upper 

case was not used anywhere else in the corpus. 

Restricting the initial knowledge to these nominal expressions is based on the 

well-known phenomenon that nominal expressions in general are acquired prior to 

adjectives and verbs (predicates), because while predicates logically presuppose 

arguments, the reverse is not true (Lenneberg 1967; Gentner 1978, 1982; Markman 1989; 

Fisher 1992).23 Based on their longitudinal study of 30 children, Bates et al. (1988) report 

that at age 20 month, nouns were dominant (46.8% of total vocabulary) compared to 

verbs (8.3%) and adjectives (7.5%).24 The early primacy of nouns has also been reported 

for other languages, including German, Mandarin Chinese, Turkish, and Japanese.25  

Limiting pronouns to the subset above is based on the fact that these pronouns 

constitute single-word noun phrases, compared to other pronouns which can constitute 

single NPs, or be part of a larger NP (e.g., her and his), which makes them easier to 

identify in the input. However, the noun-primacy justification of pronominal single-word 

NPs as bootstraps is used here with a proviso. Given that a noun in this context refers to a 

specific instance of an object, information that is usually manifested in a prenominal 

article, demonstrative, or quantifier, it is plausible to think of this noun as a simplified or 

impoverished NP, given the apparent absence of the function words in the early lexicon, 

                                                   
23 For a different explanation see Gasser and Smith 1998. 
24 As it was mentioned in footnote 21, these numbers add up to only 62.6%. The authors did not mention 
anything about the remaining 37.4%.  
25 However, Choi and Gopnik (1993) show that this is not the case in Korean. 
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which are usually used to build full-fledged NPs. This amounts to claiming that an 

instance of an object is the equivalent of an NP, and that a NOUN is an abstraction over 

these NPs/instances. Accordingly, the term NP is used throughout this discussion to refer 

to an instance of an object, be it a thing or a person. The significance of this point to how 

the algorithm proceeds is that (i) if these nouns are interpreted as a simple category, then 

the algorithm would start with detecting more nouns in the input, but (ii) if they are 

interpreted as simplified noun phrases, the next step would be to detect more NPs, and 

not nouns. I will assume the second possibility without further discussion. This means 

that the algorithm proceeds accordingly and detects more NPs first then identifies nouns 

in a top-down fashion, as will be detailed below. 

Given this, these initial NPs provide a priorly learned vocabulary of nominal 

items to bootstrap verb learning. Accordingly, the algorithm uses the distributional 

properties of these NPs to detect the maximum number of other NPs in the input before 

moving to verb detection. The logic behind this is that the early identification of more 

NPs should result in more NP-cued contexts which would facilitate verb detection.26 The 

distributional regularities of these NPs are then used to identify the first examples of 

verbs in the input. The structural regularities of the contexts of these verbs are then used 

to identify potential frames. These frames are then used to construct induction rules to 

infer new NPs and verbs. This NP-Verb-Frame cycle (Figure 4) applies iteratively until 

no further knowledge can be gained.  

                                                   
26 In theory, these initial NPs could be enriched with binary semantic properties of nominal expressions 
such as animate-inanimate, human-nonhuman, and count-mass which would significantly facilitate verb 
detection, among other things. However, the idea here is to limit the initial knowledge to structural 
information and to the bare minimum needed for a successful bootstrapping. 
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Pronouns   Verbs    Frames 
Names 
 

 
 

Figure 4. The Learning Cycle in CBL-1 

 

Unlike other strategies, CBL-1 gives frames a more dynamical role in grammar 

induction. That is, once a frame is identified in the input, it is a part of the induction rules 

for the identification of more NPs and verbs, and consequently more frames. 

6.1 Corpus Descr iption and Pre-processing 

The algorithm used the CHILDES database of the child Peter in Bloom (1970). 

Only the adults’  transcribed speech was used. The corpus contained 25148 lines, 156646 

tokens, and 3086 words. The corpus was minimally preprocessed in the following 

manner. Utterances were classified into three main types: Declarative (UD), Interrogative 

(UQ), and Exclamatory (UE), using the punctuation marks provided in the transcribed 

speech as approximations. That is, utterances that ended in a period ‘ .’ , were marked as 

UD, utterances ending in an exclamation mark ‘ !” , were marked as UE, and utterances 

ending in a question mark ‘?’ , were marked as UQ. Figure 5 shows some representative 

utterances from the corpus after preprocessing. 

 
               oh my goodness UE 

do you want me to do it UQ 
there you go UD 

 
Figure 5: Sample utterances from the CHILDES corpus 

marked for sentence type 
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Below I present a detailed description of the three main components of the 

algorithm above i.e., NP, V, and frame identification, and how distributional induction 

rules are used to move from one learning phase to the other. The outcome of every phase 

is used to build a partial grammar (including a lexicon) for the input language. Every time 

new information is inferred, the grammar, and consequently the corresponding lexicon, is 

updated to incorporate this information and use it for further learning. 

6.2 NP Identification 

 The NP identification component of the learner starts with initial NPs, which 

include only a subset of pronouns and names, for the reasons given above. The first step 

in learning was to replace these expressions in the corpus with a single symbol, i.e., NP, 

as in (54), where CAP stands for words starting with a capital letter. The application of 

(54) resulted in replacing 26027 tokens in the corpus as single-word NPs.  

(54) { I | he | she | it | we | they | you | me | him | us | them | CAP}  � NP 

The immediate contexts of these NPs were used to identify the environments where NPs 

are highly expected to occur, in order to infer new NPs. Accordingly, these NP-cued 

contexts were brought to bear in the construction of the NP Identification Procedures in 

(55). The first procedure is based on the Cue-Based Procedure for Distributional 

Similarity introduced in (48) above. Accordingly, if a word X is followed by an NP more 

than half of X’s occurrences in the input, it is most probable that the most frequent 

untagged word following X would indicate the left boundary of another NP. The second 

procedure detects the right boundary of a single-word NP output by the first procedure. 

This procedure is implemented as a demon which is automatically triggered when 

particular condition(s) occur (Nilsson, 1982). Whenever a new piece of knowledge is 
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input, this demon (depending on the nature of the particular piece of knowledge) would 

activate additional pieces of knowledge by applying their sets of inference rules to it. 

These new pieces in turn might result in more demons being activated.  

(55) NP Identification Procedures 
a. FUNCTION INITIALIZE-NP(Y, ‘NP[Y’) 

for  i := 1 to n, 
 get frequency f(Xi) ; 

for   every Xi, NP immediately follows Xi 
get frequency afi := f(Xi, NP); 

if  afi <527 ;  
fail  
else 

get frequency rfi :=  
)( i

i

Xf

af
; 

if  0.5 <  rfi < 1; 
for   every Xi, Yi immediately follows Xi 
get frequency f(Xi, Yi) 
build a decreasing frequency profile Fi:=  {f(Xi, Yi) > f(Xi, Yj),…} ;  

if  there is Yi ; 
   Yi most frequent in Fi ;  
   Yi most frequent in Fj ;  

then INITIALIZE-NP(Y, ‘NP[Y’ );  
   else 
   fail 

else 
fail 

 

b. FUNCTION ‘NP[Y D ���� NP[Y] D’  
if NP[Y, D,  
D := NP,  

or  
D := sentence-boundary,  
then 

 NP[Y D � NP[Y] D . 
  

The two procedures were run on the corpus only twice. This number was based on 

a pilot experiment that showed that no new NP-initializers were identified after the 

                                                   
27 This threshold on bigram frequency was meant to reduce the effect of transcription errors in the corpus, 
so that the decision would not be based on rare events that could have resulted from these errors.  
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second run. Every word X was used only once in inducing NP initializers. That is, if a 

word X was used in the first induction run, it would be excluded from the second run.  

 In the first run of the procedure, 824 XNP bigrams were extracted. The bigrams 

that occurred less than 5 times28 were excluded, which reduced the number to 242 

bigrams. These bigrams were further reduced by the relative frequency requirement to 

only 56 bigrams, which were used in NP induction. Table 15 shows some of these 

bigrams and how they were used in induction. In Table 15, the first column shows some 

of the extracted bigrams, the second and third columns give the absolute frequencies of 

Xs and the XNP bigrams, the fourth column represents the relative frequency of the XNP 

bigrams, the fi fth column shows the most frequent bigram of X followed by any untagged 

word Y, and the last column gives the potential NP initializers, using the information in 

the fi fth column. 

X NP F(X) F(XNP) 

)(

)(

Xf

XNPf
 

Most Frequent XY 
Bigram 

Potential NP 
Initializer 

what’ re NP 205 202 0.985 what’re the the 

if NP 307 284 0.925 if this this 

let NP 250 227 0.908 let her her 

show NP 97 83 0.856 show her/mommy her, mommy 

gave NP 26 22 0.846 gave her her 

where’d NP 42 36 0.857 where’d that that 

did NP 728 560 0.769 did the the 

give NP 171 129 0.754 give the the 

when NP 196 144 0.734 when that/did that, did 

throw NP 102 61 0.598 throw that that 

 
Table 15: Some of the bigrams extracted by the NP procedure in (55). 

 

                                                   
28 This threshold was necessary because of some transcription errors in the corpus. 
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Given this information, NP induction applies in the following fashion. For every X, there 

is an n-number of untagged words Ys that follow X. This means that, for every X there is 

an n-number of XY bigrams equal to the number of Ys. Every bigram (X iY i) has a score 

S that should be greater than 1 for this bigram to be used in NP induction. The scores of 

all the XY bigrams for every X were sorted descendingly, and the bigrams with the 

highest scores were collected. If there is a Y i such that Y i is a member in more than one 

most-frequent bigram, and that the sum of the scores of these bigrams are 
�
 5, then Y i is 

interpreted as an NP-initializer.  

Applying this part of the procedure resulted in identifying the words the, that, and 

her as NP-initializers. The scores of these words as the second members of most-frequent 

bigrams were 12, 11, and 6, respectively. The words this, mommy, and did were also 

among the members of the set of potential NP initializers, yet they were excluded 

because they did not have the threshold frequency required by the procedure in (55). 

Accordingly, whenever any of the words the, that, or her was found in the input an NP 

was initialized, as in (56). This resulted in marking the left boundary of 9765 NPs. The 

right boundary of these NPs were identified using the rules in (57), (58), and (59), based 

on the procedure in (55 b). 

(56)  a. …the… � …NP[the… 

 b. …that…� …NP[that… 

 c. …her…� …NP[her… 

(57)  NP[Y Delimiter � NP[Y] Delimiter; Delimiter is another tag (so far NP) or a 

sentence/clause boundary. 

(58)  NP[Y W Delimiter � NP[Y W] Delimiter; if Y does not occur alone between 

delimiters in the input, i.e., the. 

(59)  NP[X W Delimiter � NP[X W] Delimiter; if W is a second member in the NPs in 

(58) and X occurs both alone between delimiters as a single-word NP, or as an 

NP-initializer i.e., that and her. 
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These newly identified NPs and the initial NPs (pronouns and names) were then 

used in the second run of the procedure in (55). All the bigrams that were used in NP 

induction in the first run were excluded in the second run. This resulted in identifying the 

words this, a, and your as NP-initializers. Applying a rule similar to the rule in (56) 

resulted in identifying the left boundary of 5041 NPs. The right boundary of these NPs 

was identified using the rules in (57), (58), and (59).  

 Thus far, 40833 NP tokens have been identified; 26027 of them are pronouns and 

names, and 14808 were induced using the procedure in (55). These NPs included single 

as well as double-word NP structures, as given in (60). The emergence of the latter form 

of NPs can be interpreted as an indicator of the nature of nominal Phrase Structure Rules 

(PSRs) in English. 

(60) a. NP1 � Word  

Word � {I | he | she | it | we | they | you | me | him | us | them | CAP | her | this | that} 

b. NP2 � Initializer Word 

Initializer � {the | your | a | her | that |this} 

Word � {car | bag | house | box | train | horse | paper | pen | pencil | cow | floor | chair} 

 

It is important to mention here that this strategy of identifying these function 

words as NP markers is similar to other strategies that were proposed to use function 

words as reliable cues to constituent structure (e.g., Bever 1970, Fodor & Garrett 1967, 

Kimball 1973, Watt 1970b, and Clark & Clark 1977). For example, Kimball (1973) has 

proposed the following strategy: Whenever you find a function word, begin a new 

constituent larger than one word. More specific strategies were proposed by Clark &  

Clark (1977), including the following strategy: Whenever you find a determiner (a, an, 

the) or quantifier (some, all, many, two six, etc.), begin a new noun phrase (NP). In spite 
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of this ultimate similarity, there is a significant difference between these strategies and 

the strategy proposed here. While these two strategies are seeded with initial knowledge 

of function words, the procedure in (55) and the related rules in (56) through (59) inferred 

this knowledge distributionally. This means that these distributional strategies are able to 

derive this knowledge and capture the frequency effect of function words without 

assuming any a priori knowledge about these words. 

Given the double-word NPs in (60b), two categories were easily differentiated in 

the input in a top-down fashion, i.e., Determiners and Nouns. (The labels can be 

anything. These labels are used here for convenience). Determiners are just what have 

been termed NP-initializers, and Nouns are just the second elements in a double-word NP 

(i.e., NP[Initializer Word]. This resulted in identifying 640 words with a total of 5208 

tokens as Nouns. (See Appendix A for a full list of the nouns identified). These potential 

nouns and determiners were added to the lexicon which initially included pronouns and 

names. New tokens of these words were identified using the simple procedure that any 

instance of these 662 words was tagged as Noun if it occurred immediately after one of 

the Determiners the, a, and your in the corpus. These determiners were used because, as 

it was mentioned above, there was no evidence in the corpus that they could occur alone.  

Applying this procedure increased the number of the identified noun tokens to 

8445, thus providing an accurate strategy to consume as many input tokens as possible as 

Nouns. In more specific terms, the NP induction procedures above consumed 14642 

tokens of the input either as nouns or determiners. These tokens plus the initial pronouns 

and names represented �  9% of the 156646-token input. The assumption is that this 9% 
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would serve as a sufficient bootstrap of predicate identification and frame detection, as 

will be shown below. 

6.3 Predicate Identification 

It was observed that after the identification of more NPs, the input did not contain 

sentences or utterances of the form [NP NP NP], yet there were few examples of 

utterances of the form [NP NP]. The fact that this and other sequences are not attested in 

the input could be attributed to two different yet equally possible reasons. The first is that 

a sequence is ungrammatical; therefore it does not occur in the input. The other is that 

this sequence is grammatical but does not exist in the particular corpus used in the 

learning process. In this dissertation, the null hypothesis is that if a certain distributional 

sequence is not attested in the input, this sequence should be ungrammatical until there is 

enough distributional evidence in the input supporting the other possibility. In case this 

evidence is available, the learning procedures should be able to perform accordingly. 

Consequently, it was concluded that the absence of utterances of the form [NP NP NP] 

should constitute a distributionally-driven constraint on possible utterance forms in 

English.  

6.3.1 Predicate Identification Procedure 

Assuming this constraint, i f an utterance is composed of two NPs and a single variable, 

this variable must be a predicate of some sort in order to avoid the [NP NP NP] sequence 

that was not attested in the input. This means that in the following configurations, X must 

be assigned a non-nominal value.  

[NP X NP] 
[X NP NP] 
[NP NP X] 
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What is interesting about using these configurations in predicate induction is that 

these inference configurations are neither sensitive to word order nor to case, which gives 

this procedure of predicate identification a language-independent flavor. Moreover, the 

distributional basis of this induction has some supporting evidence from language 

acquisition studies. Landau & Stecker (1990) present intriguing evidence that young 

children interpret a novel word as a semantic predicate if it appears with NP arguments. 

This finding is consistent with the notion that a sentence, partially represented as a 

structure containing NP arguments, can serve as a quite general analog of its semantic 

predicate/argument structure (Fisher 1996). The generality of this procedure is an 

advantage for the theory of the acquisition of predicate terms. Not all languages have 

distinct categories of prepositions and predicate adjectives, but may instead use verbs to 

convey spatial or attribute meanings (e.g., Croft 1990). 

However, this process of variable evaluation is not unconstrained. That is, the 

utterances/sentences that were used as inference seeds were limited to the declarative 

type (UD), on the basis of the well-attested psycholinguistic finding that declarative 

sentences are acquired prior to other sentence types. Building on this, the first phase of 

the Predicate Identification Procedure is given in (61). Applying (61) to the corpus 

resulted in identifying the 57 words in (62) totaling 15016 tokens as potential predicates.  

(61) Predicate Identification Procedure 

a. I f  [NP X NP]UD,  

[X NP NP]UD, or 

[NP NP X]UD,  

Then  tag X as Predicate. 

b. Tag as Predicate all the instances of X in the contexts X NP and NP X. 
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(62)  Predicates 

[and beg bring brought changed closed closing did do drew dropped 
eat finished fixed found get give got guess has have heard helped hit 
hold hurts is knows know like lost made make mean misunderstood 
move m needs need open pull saw says scared see show take tape tell 
thank think throw understand want was wiping] 

 
6.3.2 Verb Identification Procedure 

It is clear from the set of predicates in (62) that, except for ‘and’ , all its members 

can function as verbs. Moreover, some of these verb forms also function as predicative 

adjectives in the corpus (e.g., finished, fixed, lost, and scared). Given that these predicates 

are the inference base that would be utilized later in inducing new knowledge about NP 

arguments and predicates, it is essential to sub-classify them into more fine-grained 

categories in order to avoid any future errors in tagging/parsing.  

The procedure that was used in differentiating verbs from other predicates is 

based on an assumption similar to that used in the NP Identification Procedure in (55). 

This procedure works as formulated in (63). Applying this procedure to the set of 

predicates in (62) resulted in subcategorizing the 48-member subset of the predicates in 

(64) as verbs. 

(63)  Verb I dentification Procedure 
If word X is identified as a predicate (P), X is subcategorized as a verb iff  

)(

)(

Xfrequency

PXfrequency =
 > .5 

(64)  Verbs 
[beg bring brought changed closing did do drew dropped eat found 
get give got guess has have heard helped hit hold hurts is knows 
know like made mean misunderstood move m needs need open 
pull saw says see show take tell thank think throw want was 
wiping] 

 
Comparing the subset in (64) to the set of predicates in (62), it can be observed that this 

verb subset excludes the predicates (and, closed, finished, fixed, lost, make, scared, tape, 
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and understand) which include predicates that function as verbs, among other things. 

However, this does not mean that these predicates are excluded altogether from the set of 

potential verbs, it rather means that these predicates are excluded from the set of verbs 

that serve as an inference base, and that the verb status of these predicates would be 

established at a later phase in induction. On one hand, excluding these predicates from 

the induction base decreased the cardinality of the induction set, yet on the other hand, it 

helped, at an early stage in grammar induction, in avoiding future overgeneralizations. 

This information about verbs was added to the lexicon that has been constructed so far. 

(See Appendix B for a list of the verbs identified.) 

6.4 Frame Identification 

Having identified some verbs, the next step was to utilize the distributional 

regularity of these verbs to capture structural patterns in the input. These patterns would 

facilitate identifying verbal frame behavior. The set of possible frames in the input was 

defined by (53) in Section 5.4 in the previous part, repeated below for ease of reference: 

(53) Cue-Based Frame Definition 
Let P = { p1,…, pn}  be the set of possible predicates in a corpus R 
Let C = { c1,…,cm}  be the set of contexts where the members of P 
occur, then the set of possible frames in R is the smallest subset, 
Cf, of C such that every predicate in P occurs at least once in at 
least one context in Cf. 

 

6.4.1 Initial Frame Identification 

As a result of NP and verb identification more input was tagged and became 

visible to the learning procedure, and consequently fully or almost fully labeled 

utterances/sentences started to emerge. Some of these sentences in the corpus are 

illustrated in (65) below. The emergence of these sentences signaled the emergence of 
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structural patterns in the input, which is a clear precursor of sentential phrase structure 

rules (PSRs). Accordingly, these patterns were used to extract the primary PSRs in (66). 

These rules represent possible sentence structures in English. This means that the 

grammar constructed so far includes a lexicon of Nouns, Predicates, and Verbs, in 

addition to PSRs describing possible NP and sentence structures. 

(65) a.  [NP[it] V[hurts]] UD 

b.  [V[open] NP[it]] UD 

c. [NP[I] V[found] NP[it]] UD 

d. [NP[I] V[guess] NP[it] V[is]] UD 

e.  [NP[you] V[have] to V[open] NP[Det[the] N[trunk]]] UD 

f. [NP[I] V[want] NP[you] to V[get] NP[it]] UD 

g. [V[bring] NP[it] to NP[me]] UD 

h. [NP[you] V[give] NP[me] NP[that]] UD 

 

(66) a.  S � NP V 

b. S � V NP 

c. S � NP V NP 

d. S � NP V S 

e. S � NP V to V NP 

f. S � NP V NP to V NP 

g. S � V NP to NP 

h. S � NP V NP NP 
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 F0 F1 F2 F3 F4 F5 F6 

V _ _NP _NP S _ to|ta V  _NP to V _NP to NP _NP NP 

beg 0 1 0 0 0 0 0 
bring 0 1 0 0 0 1 1 
brought 0 1 0 0 0 1 1 
changed 0 1 0 0 0 0 0 
closing 0 1 0 0 0 0 0 
did 1 1 0 0 0 0 0 
do 1 1 0 0 0 0 0 
drew 0 1 0 0 0 0 0 
dropped 0 1 0 0 0 0 0 
eat 0 1 0 0 0 0 0 
found 0 1 0 0 0 0 0 
get 0 1 0 0 0 0 0 
give 0 1 0 0 0 1 1 
got 0 1 0 0 0 0 0 
guess 1 1 1 0 0 0 0 
has 0 1 0 0 0 0 0 
have 0 1 0 1 0 0 0 
heard 0 1 0 0 0 0 0 
helped 0 1 0 0 0 0 0 
hit 0 1 0 0 0 1 0 
hold 0 1 0 0 0 0 0 
hurts 0 1 0 0 0 0 0 
is 0 1 0 0 0 0 0 
knows 0 1 0 0 0 0 0 
know 1 1 1 0 0 0 0 
like 0 1 0 1 1 0 0 
made 0 1 0 0 0 0 0 
mean 0 1 1 1 0 0 0 
misunderstood 0 1 0 0 0 0 0 
needs 0 1 0 0 0 0 0 
need 0 1 0 1 1 0 0 
saw 0 1 0 0 0 0 0 
says 1 1 0 0 0 0 0 
see 1 1 0 0 0 1 0 
show 0 1 0 0 0 1 1 
take 0 1 0 0 0 1 0 
tell 0 1 0 0 1 0 1 
think 0 1 1 0 0 0 0 
throw 0 1 0 0 0 1 1 
want 1 1 0 1 1 0 0 

 
Table 16: Initial Frames identified by CBL-1 
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Table 16 shows some verbs and their potential frame(s) that were identified using the 

procedure in (53). Accordingly, ‘1’  under a frame was used to indicate the occurrence of 

the corresponding verb in this frame, and ‘0’ to indicate its non-occurrence. An 

underscore ‘_’  in a frame marks the position of the corresponding verb, and if nothing 

follows this underscore, this means that the corresponding verb is intransitive. An S in a 

frame, e.g. F2, stands for any sentence structure in (66) and can be replaced by the 

corresponding structure on the left-hand side of the rule. The ‘X|Y’  in a frame means X 

or Y, as in F3, where a verb can be followed either by to or ta29.  

This potential frame behavior was added to the lexical entries of the verbs 

identified so far. The examples in (67) show the primary lexical entries of some of these 

verbs, enriched with this frame information.  

(67) a.   bring: Pred, V, F1( _ NP), F5( _ NP to NP), F6(_NP NP) 

b. want: Pred, V, F1(_NP), F3( _ to V), F4( _NP to V) 

c. see: Pred, V, F1(_NP) 
 
The lexicon could be streamlined by using a redundancy rule to the effect that ‘every 

verb is a predicate by default’ , hence the Pred part need not be mentioned in the lexical 

entry of every verb. The frame information in the lexicon could be further simplified, as 

given in (68), by adding the frames (F) and their structural realizations (S) to the lexicon 

as independent entries, and reducing this information in the lexical entries of the verbs to 

a pointer to the relevant frame entry. 
 

 

                                                   
29 ta resulted from two different sources in the transcription of the corpus. The first was the result of 
transcribing sequences such as want a pen as want ta pen. The other was the result of transcribing 
sequences such as want to play as want ta play. Given that there were not many instances of the first case in 
the corpus,  ta was used as another form of to. 
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(68) F�  : S�  

 F�  : S�  

 F�  : S�  

 etc… 

(69) Vi : F�  , F� , etc… 

 Vj : F �  , F � , etc… 

 Vk : F�   

 

This representation would result in a more compact and economical lexicon structure, 

since the frame information would be encoded only once in the frame entry.  

6.4.2 Frame-based Induction: The First Phase 

Having enriched the lexical entries of the verbs identified so far with their frame 

information, these frames were used in inducing new arguments as well as new 

predicates/verbs. The main idea behind using the verbal frame information in induction is 

that a structure S is the result of satisfying the frame requirements of the verbs involved. 

Accordingly, i f a given structure S contains a variable R and the verbs V1 and V2, R is 

assigned a value/tag that satisfies the requirements of V1 and V2. For example, in the 

sentence S = [X V1 NP V2], where the lexical entries of V1 and V2 contain F1 

information, the variable X should be assigned an NP tag. Unlike the predicate/verb 

identification procedures, this induction procedure has no restriction on the sentence 

types input to the induction rules. This means that this input contains declarative as well 

as interrogative sentences. And like other induction procedures, the rules below prioritize 

NP induction over predicate/verb induction.  

The first induction rule was based on F1 in Table 14. This rule works, as 

mentioned in the example above, in the fashion laid by (70). If there exists a 
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sentence/utterance in the input such that it contains one variable X in the position given 

in the left-hand side of the rule, and verbs that have transitivity information in their 

lexical entries, X should be re-written as NP. The input to this induction rule consumed 

sentences such as those exemplified by (71). Numerical subscripts were used to indicate 

the frame(s) of the verbs involved in the induction rule. 

(70)  [X V1 NP V1] � [NP V1 NP V1] 
(71)  a. What V[do] NP[you] V[see] ] UQ 

b. Who V[do] NP[you] V[see] ] UQ 
c. What V[did] NP[you] V[do] ] UQ 
d. What V[do] NP[you] V[want] ]UQ 

 

The application of (70) to the input distinguished the words what, who, and how as 

potential NPs. Other instances of these words were also tagged as potential NPs using the 

rules in (72), where the rule in (a) identifies the left boundary of these potential NPs, and 

(b) their right boundary. 

(72)  a. Delimiter (what|how|who) � Delimiter NP[(what|how|who) . 

  b. (what|how|who) Delimiter � (what|how|who)]NP Delimiter. 
 

The second NP induction rule was based on F4 and F5, namely, _NP to V and _NP 

to NP, respectively. These two frames were used in induction in the following manner. 

Given the structure stretch S = …V X to.., where V is a verb that subcategorizes for 

either F4 or F5, X is re-written as an NP. Rule (73) formalizes this induction process. The 

dots in the rule are used to indicate elements that do not affect induction. 

(73) …V4|5 X to …� … V4|5 NP to … 

This procedure identified the words mama, mommy, keys, everyone, people, something, 

tape, someone, buns, and em as potential NPs. To identify more instances of these words 

as potential NPs, delimiting rules similar to those in (72) were applied. 
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New verbs were identified using frames F2, F3 and F4, according to the rules in 

(74), (75), and (76), respectively. If X in the left-hand side of the rule was previously 

tagged as Predicate, this tag was transformed into the more specific tag, V, as it was the 

case with make, tape, and understand. The predicative status of these words is still 

preserved by the redundancy rule mentioned above. Applying these rules to the corpus 

yielded the 104 potential verbs in (77), raising the number of potential verbs identified so 

far from 48 to 152 verbs. Then (61b) of the Predicate Identification Procedure was 

applied in order to identify more tokens of these verbs. Accordingly, every instance of the 

verbs in (77), either untagged or previously tagged as Predicate, was also tagged as V if it 

immediately preceded or followed an NP. These new verbs and their tokens were then 

used as delimiters in the NP boundary identification demons.  

(74) …V3 (to | ta) X… � …V3 (to | ta) V… 

(75) …V4 NP to X… � …V4 NP to V… 

(76) … V2 NP X (] | NP | V) � … V4 NP V (] | NP |V) 

 
(77)   Newly Identified Verbs 

[am answer are ask be blow borrow break broke build change choose 

close come cry cut die does draw drink feel f ind fit fits fix go goes help 

hole hurt just lean learned leave left lick lift likes lock look make now 

opens pack park pat pen pencil pick piece pitch play pour pull push put 

re read ride roll said say screw set share sing sit sleep speak spill spilled 

spread spoil squeeze stand start stay stick stop swim talk tape taste tear 

threw tinkle trade try turn turned understand unscrew use wait wake walk 

wants wash waste watch wear will wipe woke work works write] 

It can be noticed that with the exception of just, now, pen, pencil, and piece, all the 

potential verbs in (77) are actual verbs. By checking the contexts of the last three nouns 

in these erroneously tagged words, it was found that they occurred in contexts such as 
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want ta pen|pencil|piece, which are transcriptions of want a pen|pencil|piece, hence the 

rule in (74) applied. Though this error resulted from transcription errors in the corpus, the 

mis-tagging of these words as verbs represents a serious weakness in this 

implementation, i.e., the absence of probabilistic category assignment in order to capture 

the probabilities of the membership of a given word in more than one category. This 

drawback is circumvented by the other implementation of cue-based learning as will be 

shown in the next chapter.  

6.4.3 New Frames 

As a result of identifying new verbs, new distributional regularities emerged, and 

consequently the Frame Identification Procedure in (53) was triggered. Remember that 

the input to this procedure is limited to declarative sentences/utterances. The new 

configurations where the new and old verbs occurred were both input to the procedure. 

The output of this procedure created two possibilities. The first was that the new 

configurations instantiated one or more of the existing frames, in this case frame pointers 

were added to the lexical entries of the verbs occurring in these configurations, and the 

relevant induction rules applied. For example, the verbs try and wants realized the old 

frame F3, i.e., _to|ta V, wants occurred in F4, i .e., _NP to|ta V as well, help instantiated 

F2, i.e., _NP V, and make appeared in F2 as well as F6, i.e., _NP NP. The other possibility 

was that some or all of the new configurations did not realize any of the existing frames, 

in this case new frame entries were added to the lexicon, and pointers to these frames 

were inserted in the lexical entries of the relevant verbs. Table 17 shows the new 

potential frames that did not match any of the old frames, and some examples. 
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The frame results in Table 17 raise two important and interrelated issues. The first 

is that words such as off, on, out, and up, which can function as either prepositions or 

particles, were identified as part of the frames F7 through F10 of the pertaining verbs. 

Some examples of these items in the corpus are given in (79). 

(79) a. [V[turn] NP[it] off] ] UD 

  b. [V[put] NP[it] on] ] UD 

  c. [V[take] NP[it] out] UD 

d. [V[pick] NP[it] up] ] UD 
 

The other issue is that the frames F11 through F19 as well contain elements that might be 

interpreted either as arguments or adjuncts to the corresponding verbs. This can be seen 

in the examples in (80), where the italicized parts indicate the relevant structures. 

(80) a. [NP[I] V[want] ta V[play]  with NP[ the N[blocks]N]NP] UD 

b. [NP[you] V[have] to V[write]  with NP[ it] ] UD 

c. [NP[we] V[have] to V[ take]  NP with NP[us] ] UD 

d. [NP[I] V[ think]  if NP[you]  V[ look]  in NP[that bag NP[you] might 

V[find] NP[it] UD 

e. [V[ask]  NP[Patsy]  if NP[ that]  V[s]  NP[the N[donkey]N]] UD 

f. [NP[I] V[ found]  NP[ it]  for NP[you] ] UD 

 

Again these two issues represent another weakness in this model, which is also 

circumvented in the other model by resorting to complement- and adjuncthood 

probabilities, as will be shown later. 
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 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 

V _np on _np off _np out _np up _to np _with np _ on np _np with np _np on np _np in np _if S _np if  S _np for np 

ask 0 0 0 0 0 0 0 0 0 0 0 1 0 

close 0 0 0 1 0 0 0 0 0 0 0 0 1 

come 0 0 0 0 0 0 1 0 0 0 0 0 0 

cut 0 0 1 0 0 0 0 0 0 0 0 0 1 

do 0 0 0 0 0 1 0 1 1 0 0 0 0 

draw 1 0 0 0 0 1 0 0 1 0 0 0 0 

drink 0 0 0 0 0 0 0 0 0 1 0 0 0 

found 0 0 0 0 0 0 0 0 0 0 0 0 1 

get 0 1 1 0 1 0 1 0 0 0 0 0 1 

go 0 0 0 0 1 1 1 0 0 0 0 0 0 

have 1 0 0 0 0 0 0 0 1 0 0 0 0 

hold 1 0 0 0 0 0 0 0 0 0 0 0 1 

leave 0 1 1 0 0 0 0 0 1 1 0 0 0 

lift 0 0 0 1 0 0 0 0 0 0 0 0 0 

made 0 0 0 0 0 0 0 0 0 0 0 0 1 

pick 0 0 0 1 0 0 0 0 0 0 0 0 0 

play 0 0 0 0 0 1 0 0 0 0 0 0 0 

pull 0 1 1 0 0 0 0 0 0 0 0 0 0 

put 1 0 1 0 0 0 1 0 1 1 0 0 0 

ride 0 0 0 0 0 1 1 0 0 0 0 0 0 

see 0 0 0 0 0 0 0 0 0 1 1 0 0 

stand 0 0 0 1 0 0 0 0 0 0 0 0 0 

take 0 1 1 0 0 0 0 1 0 1 0 0 0 

tear 0 1 0 0 0 0 0 0 0 0 0 0 1 

tell 0 0 0 0 0 0 0 0 0 0 0 1 0 

thank 0 0 0 0 0 0 0 0 0 0 0 0 1 

think 0 0 0 0 0 0 0 0 0 0 1 0 0 

try 0 0 1 0 0 0 0 0 0 0 0 0 0 

turn 1 1 0 0 0 0 0 0 0 0 0 0 0 

want 1 0 0 0 0 0 0 0 1 0 0 0 0 

wash 0 0 1 0 0 0 0 0 0 0 0 0 0 

wipe 0 1 0 0 0 0 0 0 0 1 0 0 0 

write 0 0 0 0 0 1 1 0 0 0 0 0 0 

 
Table 17: Examples of the new frames identified by CBL-1 
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6.4.4 Frame-based Induction: The Second Phase 

As for the verbs realizing any of the old frames, induction was carried out on the 

basis of the induction rules that were based on these frames. In the case of the verbs 

instantiating new frames, these frames were used to construct the induction rules in (81), 

in a fashion similar to that adopted with the old frames. The application of the rules in 

(81) distinguished the words in (82) as possible single-word NPs or Determiners.  

(81)  a. …V7|8|9|10 X (on | off | out | up)…�… V7|8|9|10 NP (on | off | out | up)… 

  b. …V11|12|13 (to | with | on) X …� …V11|12|13 (to | with | on) NP[X … 

c. …V14|15|16|19 X|NP (with |on |in |for) NP|Y…�…V12 NP[X] (with |on |in  

|for) NP[Y…  

 d. …V17 if (X | NP) (Y | V)…� …V17 if NP[X] V[Y]… 

  e. …V18 (X | NP) i f (Y | NP) (Z | V)…� …V18 NP[X] i f NP[Y] V[Z]… 

(82)  New Potential NPs and Determiners 
[an all bed bologna both everything gas home milk my one paper 
sauerkraut sausage school scissors shoes sleep some their there 
these those yourself] 

 

6.4.5 Delimiters 

 So far delimiters have been used in the identification procedures and induction 

rules without a formal definition of what qualifies as a delimiter. NPs, Vs, Predicates, and 

sentence boundary were used as delimiters. This arbitrary choice was based on the 

assumption that these elements mark the beginning and/or the end of NP chunks; i.e., 

non-recursive NPs that do not overlap with other phrases. Vs and Predicates were used as 

NP delimiters based on the original assumption that NPs refer mainly to objects (people 

and things), hence these non-nominal elements indicate the beginning or the end of a 

nominal expression (i.e., NP). NPs, by default, imply the end of a constituent and the 

beginning of another. 
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 Having identified the rudimentary frames in Tables 16 and 17, a delimiter can 

now be formally defined as follows. 

(83)  An item is a delimiter D iff it immediately precedes or  

follows an NP in a given frame. Hence 

 D = { V | Pred | NP | S | to | off | on | out | up | to | in | with | i f | for}  
 

Limiting delimiters to items in the frames identified is consistent with the strategy that 

has been followed throughout that the input to any component of the learning procedures 

should be limited to those elements that are visible to the learning algorithm. An element 

is visible if it is part of the output of an identification procedure or an induction rule. 

Including the word to, off, on, out, up, to, in, with, if, and for in the set of delimiters 

according to (83) is based, in addition to their visibility, on the simple argument that if a 

word immediately precedes or follows a non-recursive NP, then this word is not part of 

this NP, and should indicate its left or right boundary. Having expanded the set of 

delimiters using (83), it was possible to detect the boundaries of more NPs, and 

consequently all other related procedures and induction rules were triggered. 

6.4.6 Saturation 

 The processes of identifying new frames, new verbs instantiating old frames, and 

frame-based induction were applied iteratively until no new frames could be identified. 

This means that the frame identification process reached saturation and a final state was 

attained. Table 18 shows the new frames that were identified and some of the verbs that 

realized them. The words in (84) present some of the potential verbs that were identified 

after the iterative application of the induction rules. 
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F Frame Structure Verbs 

F20 _ V   can don’t doesn’ t didn’ t can’ t could make do must might  

F21 _ NP down  pull bring put take 

F22 _ NP away  put take took throw threw  

F23 _ NP back  got put bring give take push 

F24 _ NP over  turn turned pull  

F25 _ NP around  turn pull 

F26 _ NP from NP  learn take 

F27 _ NP under NP  put see  

F28 _ NP inside NP  want put 

F29 _ into NP  roll look 

F30 _ in NP  get sit goes look 

F31 _ through NP  look  

F32 _ about NP  found think  

F33 _ on NP  go ride write got turned sit was get come slide  

F34 _ with NP  play do draw goes go write  

F35 _ for NP  go need  

F36 _ at NP  look sing 

F37 _ out NP  wash look  

F38 _ up NP  pack open go tape 

 
Table 18: Examples of the new frames identified by CBL-1 after saturation 

 
 
(84) [already been bend better  breathe buy call can't can care carry 

catch change choke climb color come complete confine could cry 
cut didn't doesn't does don't drop dry ever  fall feel figure fill find 
finish fold forgotten goes gone gotten had hammer has hear 
imagine imitate juggle jump keep knock let lick listen lock lose 
lost mail matter mess might mind missed miss must only pedal 
pinch point pretend reach read realize remember reminded ring rip 
roll run said say scare seem seen should smash sound spill spoil 
spread squeak squeeze stuff taken talked taste tickle took touch 
wait wake walk wants waste will win won works work worry 
wrap] 

 

The induction rules were constructed following the same strategy used in the 

induction rules above. Given the frames in Table 18, the ultimate number of potential 
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frames identified was 38. It is obvious that some of these frames could be further 

compressed into more general frames; however, this step is not pursued in this 

dissertation.30 

6.5 Evaluation 

The overall performance of the implementation was measured in terms of 

precision and recall (Manning and Schütze, 2003:267-269). Precision is defined as 

fptp

tp

+
, where tp (true positives) are the cases the system got right, and fp (false 

positives) are the cases the system got wrong. Recall, on the other hand, is defined as 

fntp

tp

+
,  where fn (false negatives) are the correct cases that were not captured by the 

system. 

In order to compute the precision and recall for the procedures in identifying this 

knowledge, a POS-tagged version of the Peter corpus in the CHILDES database was 

used. This version contained �  53759 verb tokens and �  1050 types, �  27426 noun tokens 

and �  1083 types, and �  15156 determiner tokens and �  33 types. The tagged version did 

not contain frame or NP information, consequently a full evaluation of the algorithms 

performance on these tasks was not possible. 

In this implementation, the learning procedures managed to collect information 

about potential verbs, nouns, determiners, noun phrases, and frames. The learner was able 

to identify 310 verb types totaling 27805 tokens, 1062 noun types totaling 8920 tokens, 7 

determiner types totaling 10844 tokens, two types of noun phrase structures totaling 

                                                   
30 For example, all frames that start with a preposition can be compressed in a more general frame of the 
form P NP. 
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20084 tokens (in addition to those that were given to the learner as cues), and 38 frames 

totaling 12512 tokens. Table 19 summarizes some aspects of this knowledge. Table 20 

shows the type and token precision and recall ratios for the implementation’s 

performance in these tasks.  

Potential Tag Types Correct (tp) Incorrect (fp)  Tokens Correct (tp) Incorrect (fp) 

Verbs 310 291 19 27805 27249 556 

Nouns 1062 1041 21 8920 8563 357 

Determiners 7 7 0 10844 10844 0 

Total 1383 1332 40 47569 46656 913 

NP 2 2 0 20084 20084 0 

Frames 38 - - 12512 - - 

 
Table 19: Summary of knowledge acquired by CBL-1 

Potential Tag Type Precision Type Recall Token precision Token Recall 

Verbs �  94% �  28% �  98% �  51% 
Nouns �  98% �  96% �  96% �  31% 

Determiners 100% �  21% 100% �  72% 

NP _ _ �  100% _ 

Average �  97 % �  48%  �  98.5% �  51% 

 
Table 20: Precision and Recall for CBL-1 

 The precision and recall ratios in Table 20 reflect two basic properties of this 

semantically-bootstrapped learner. The first is that the learner does much better in 

precision than in recall. The other is that this learner’s performance in noun identification 

is remarkably good both for types and tokens. This property could be reasonably 

attributed to the fact that this learner was initially biased in favor of nominal expressions 

because of the initial cues that were given to it, which were mainly names of things and 

people. An interesting aspect of this result is that it is consistent with the priority of nouns 

to verbs in the process of acquisition that has been established by psycholinguistic 

research as discussed in previous chapters. 
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 As for the learner’s performance in learning frames, it was difficult to evaluate 

directly given the lack of frame information in the tagged corpus. However, given the 

central role of this information in inducing knowledge about nouns and verbs in the two 

tables above, it can be assumed that the performance of the learner in identifying these 

categories can serve as an indication of its performance in frame learning. 

6.6 General Discussion and Conclusions 

 The main assumption behind CBL-1 was that the input provides a set of semantic 

cues that can be used in bootstrapping a distributional learner. The overall performance of 

this basic bootstrapping system raises some interesting questions about the role of the 

input and biased induction in language acquisition, given the very limited initial 

knowledge it bootstrapped from. 

Firstly, the learner started with minimal a priori knowledge, mainly a subset of 

nominal expressions that refer to objects in the world. The bootstrapped knowledge was 

thus induced almost completely in terms of the distributional regularity in the input, and, 

yet, was highly accurate. This cue-based learner thus presents strong evidence that the 

input provides precious language-internal regularities that can, if used methodically, 

validate an empirical approach to language acquisition. This conclusion carries even 

more theoretical weight given the very small size of the corpus used by the learner.  

Secondly, the learner showed a clear bias towards learning nouns. It is plausible 

to argue that this is the result of providing the learner with initial knowledge in the form 

of names of things and people. Yet, it is a result that deserves future investigation in order 

to understand its causes as well as its consequences. One possible direction is to replace 

this set of cues with another that includes for example only verbs, and see if the learner 
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will show a similar bias towards verbs. This possibility is partially tested in the second 

implementation in the following chapter where the learner is not given any initial cues, 

and consequently is not biased in favor of either verbs or nouns. 

Thirdly, from an automatic/human language acquisition perspective, the learner’s 

performance shows the possibility of ‘ learning a lot given little’ . Other systems for 

grammar induction, in general, and frame identification, in particular, assumed larger and 

more language-specific initial knowledge, with similar or lower performance. 

Finally, the set of initial cues used by the learner is clearly small, and can be 

easily compiled for any given language from a small corpus of this language. Moreover, 

the learning procedures contained in this learner proceed according to the distributional 

regularities in the corpus. These two main features give this cue-based learner an explicit 

language-independence flavor that makes it highly general and easier to test on other 

languages. 

However, this learner has some weaknesses that should be circumvented in order 

to obtain a more plausible learner. The first is that, being semantically bootstrapped, it 

was not based on a fully automatic procedure for cue extraction. The second shortcoming 

is that it was not able to assign more than one category to each word. The third is that it 

arbitrarily searched for possible frames in the right-side contexts of verbs, a decision that 

should be taken based on the distributional information in the corpus. The last 

shortcoming is that it assigned equal memberships to verbs that selected the same frames, 

thus ignoring the fact that some verbs clearly prefer some frames over others. 

Consequently, the following chapter presents a more sophisticated cue-based 

implementation of the learning procedures introduced in Chapter 5. 
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Chapter  7 

Implementation [2]: 

A Distr ibutionally Bootstrapped Cue-Based Learner (CBL-2) 

7.0 An Outline 

This chapter presents a Distributionally Bootstrapped Cue-Based Learner (CBL-

2) based on the Distributional Procedure for Cue Extraction, MI-Based Distributional 

Similarity, and Cue-Based Frame Identification, introduced in Sections 5.2 and 5.4 in 

Chapter 5, respectively. The general logic behind this model is (i) that key structural 

properties of a language can be bootstrapped from the distribution of mutual information 

in this language, and (ii) that cues provide a simple strategy to capture how this 

information is distributed. 

To circumvent the weaknesses of CBL-1, the learner presented here comprises 

three main algorithms. The first algorithm presents a simple cue-based method for 

predicting the head direction given a small size corpus. The logic behind starting with 

this algorithm is that important structural properties of language should follow naturally 

from information about head direction. The second algorithm presents another cue-based 

method for the identification of predicates and arguments using information provided by 

the first algorithm. Equipped with information about head direction, this algorithm is 

expected to have some initial ‘ intuition’  where to find predicates and arguments. Seeded 

with the information provided by the first two algorithms, the last algorithm exploits this 

knowledge to determine the most probabilistic syntactic frames that best describe the 

lexical syntactic properties of the predicates identified. Together, these three algorithms 

present a generalized, cue-based, and language-independent system for grammar 
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induction, in general, and frame identification, in particular. Figure 6 visualizes this 

learner. In the following sections, I present the dynamics of this learner in more detail. 

 

Corpus   Head         Predicates&    Frames 
          Direction          Arguments 

 
Figure 6: Components of CBL-2 

7.1 Probabilistic Parameter Setting: Head First 

Setting the head parameter in a target language L provides L-learner with a key 

feature of this language. Once this parameter is set, the basic word order and the 

complementation direction(s) in L can be easily identified. Learning that L is mainly 

head-initial will bias the learner towards the right context for information about 

complements. This learned bias should reduce the search space for an algorithm looking 

for the arguments of a given predicate, in particular, and any type of dependency, in 

general. Hence the importance of this step for the identification of subcategorization 

frames, the main issue of this dissertation. 

This means that setting this parameter in an early phase in the language 

acquisition process using minimal input would significantly help the learner to bootstrap 

into the rest of the grammar of the input language. 

Below, I will introduce a cue-based algorithm for computing the probabilities of any 

given head parameter setting in any language from a small-size, untagged corpus. Unlike 

the traditional generative approach to parameter setting, this method assumes that the 

value V of a given parameter T in language L is probabilistic rather than categorical. 

Moreover, this algorithm has no preconception of what a ‘head’  is, or what constitutes a 

set of possible heads in a language. What this algorithm does is estimate the probabilities 



 129 

of head direction in an input language without having any lexical-syntactic knowledge of 

specific lexical items. 

The efficiency and potential language-independent nature of the algorithm was 

tested on three languages; English, Japanese, and German. However, the main focus here 

is on English. 

7.1.1 Algor ithm 

The intuition behind this algorithm is that the head direction in any language 

should affect the distribution of mutual information between the right contexts and left 

contexts in this language. The mutual information version used in this model is that 

introduced in (49) in Section 5.3.2, repeated here for ease of reference.31  

(49) 
)()(

),(
log);( 2 yPxP

yxP
yxI =  

Comparing the mutual information in both contexts is then expected to provide a 

probabilistic measure of the head direction. If a language is predominately head-initial, 

the expectation is that the sum of the mutual information between the words in the 

language and their right contexts should be significantly larger than the sum of their 

mutual information with their left contexts. A language that instantiates both head values 

almost equally (i .e., head-initial and head-final) is expected to show similar right and left 

associations.  

                                                   
31 Remember that P(x,y) is the probability of observing x and y together, P(x) and P(y) are the probabilities 
of observing x and y anywhere in the corpus. If x and y tend to occur in conjunction, their mutual 
information will be high. If they are not related and co-occur only by chance, their mutual information will 
be zero. Finally, if the two variables tend to ‘avoid’  each other, their mutual information will be negative. 
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One way to measure the distribution of mutual information in a language is to 

sum the mutual information between the words in this language and the words preceding 

them, and compare it to the sum of mutual information with the words following them.  

However, it is shown that language input contains clear and simple language-

independent cues that can be used by the learner to uncover the direction of the mutual 

information flow in the input language. Therefore, we do not need to use the mutual 

information properties of every word in the input in order to compute the probabilities of 

the head parameter. 

The cues used are utterance boundaries. The psycholinguistic research reviewed 

in the previous part has provided strong evidence that language learners are sensitive to 

and use utterance boundaries in language acquisition.  

The idea behind using utterance boundaries as a cue to head direction in language 

is that utterance boundaries should provide key information about the distribution of 

mutual information in a given language. Languages with different head-parameter values 

should show a significant difference vis-à-vis the distribution of mutual information 

utterance-initially and utterance-finally. The probability of a language being head-initial 

or head-final is computed as a function of the two contexts, respectively. 

This algorithm was tested on corpora from English, Japanese, and German. The 

results of this algorithm showed that it converged to close approximations of the head-

parameter in these languages. It is expected that this algorithm should work with any 

language. 
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7.1.1.1 Exhaustive Mutual I nformation 

One way to measure the distribution of mutual information in a language is to 

sum the mutual information between the words in this language and the words preceding 

them, and compare it to the sum of mutual information with the words following them. 

The probabilities of any given head parameter setting in this language are then a function 

of the two sums, in the following manner. 

To compute the mutual information between a word x and its right context, we 

first compute the mutual information between x and every word y immediately following 

it (including the utterance-right boundary), then we sum these mutual information values. 

So if x is followed by M words in the corpus, x’s right-context mutual information Ix-r is 

computed by the formula in (85.a). x’s left-context mutual information Ix-l is computed 

using the words immediately preceding it, in the same way (85.b), where G is the number 

of words preceding x. 

(85) a 
)()(

),(
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1
2

i

i
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i
rx yPxP

yxP
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 b. 
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xyP
I �

=
− =  

To compute the overall left-context mutual information in a given language L, (IL-

l), we sum the left-context mutual information of every word in L. The overall right-

context mutual information (IL-r) is computed in the same fashion. If L has N words, these 

two values are computed as follows: 

(86)  )(
1
�

=
−− =

N

i
lilL xII  

(87)  )(
1
�

=
−− =

N

i
rirL xII  



 132 

The values in (86) and (87) should provide an estimate of the possible values of the head 

parameter in any given language. IL-l provides an approximation of the left dependency in 

L, and consequently can be used to estimate the probability of L being head-final, 

whereas IL-r estimates its probability of being head-initial.  

Assuming that the head parameter is binary-valued, initial or final, the 

probabilities of the head parameter for a language L are computed as given in (88), using 

the axioms of Probability (Harris and Stocker 1998: 778). 

(88)  
Let P(L(Hi)) be the probability that L is head-initial, and 
Let P(L(Hf)) be the probability that L is head-final,  
such that 

0 < P(L(Hi)) <  1 
0 < P(L(Hf)) <  1 
P(L(Hi)) + P(L(Hf)) = 1 

Then  

a. 
lLrL

rL
i II

I
HLP

−−

−

+
=))((  

b. P(L(Hf))= 1 – P(L(Hi)) 

That is, the probability that L is head-initial is computed by normalizing the overall 

mutual information in the right context by the sum of the overall information in both 

contexts. The probability that L is head-final follows naturally from the axioms above. 

The null hypothesis is that the mutual information in any language L is distributed 

symmetrically between the left and right contexts. This means that P(L(Hi) = P(L(Hf)) =  

0.50. If P(L(Hi)) is significantly greater than P(L(Hf)), then L is biased towards a head-

initial value. If P(L(Hf)) is significantly greater than P(L(Hi)), then L is predominantly 

head-final. Consequently, the null hypothesis is rejected in both cases. If L instantiates 

both head values (i.e., head-initial, and head-final) equally, these two probabilities should 

be very close, and the null hypothesis holds.  
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Given the way these two probabilities are computed, it is not likely to assert that a 

given language is categorically head-final or head-initial. This is due to the fact that in 

any language there exist words that tend to occur utterance-initially or utterance-finally. 

This means that the overall mutual information in either context is not expected to be 

zero. This implies that headedness is gradient in any given language, and that the values 

of the head parameter are only probabilistic.  

7.1.1.2 Cued Mutual Information 

 After a series of pilot experiments, it was found that head probabilities can be 

similarly estimated if we limit the left context and the right context in the formulas above 

to the utterance left-boundary and right-boundary, respectively.  

In this case, if K is the number of words that occur utterance-initially, and F is the 

number of words that occur utterance finally, (86) and (87) can be re-formulated as (89) 

and (90), respectively. 

(89) );$(
1
�

=
− =

K

i
ilL xII  

(90)  )#;(
1
�

=
− =

F

i
irL xII  

where $ and # indicate the utterance left- and right-boundary, respectively. Using these 

new estimates, head probabilities are computed using the same formulas in (88).  

These new estimates provide a simpler algorithm to compute head probabilities, 

since they do not require computing the mutual information of every word in the corpus 

using its co-occurrences with other words. This naturally involves fewer computations 

than the other strategy, where every context of every word in the corpus is taken into 

consideration. Consequently, these new estimates were used in the experiments below. 



 134 

7.1.2 Experiments 

 This algorithm was tested on untagged corpora extracted from the CHILDES 

database for English, Japanese, and German. The focus in this chapter, in particular, and 

the dissertation in general, is mainly on English. Japanese and German were only used to 

show the efficiency and possible language-independent nature of the algorithm. 

Therefore, no detailed discussion is devoted in this dissertation to the deeper implications 

of the head-direction probabilities computed by the proposed algorithm for these two 

languages. 

7.1.2.1 Corpus Descr iption and Preprocessing 

The corpus for each of these languages contains the transcription of adults’  child-

directed speech. Changes to the corpus were minimal. Single word utterances were 

removed from the corpora. Every line in the corpus was considered an utterance. The 

utterance-final punctuation (i.e. ‘ .’ , ‘ !’ , and ‘?’ ) was changed into a single utterance-final 

symbol (#), and an utterance-initial symbol ($) was added.  

7.1.2.2 English 

The algorithm was first applied to English corpora of adults’  child-directed 

speech in the CHILDES database. The corpus was extracted from the child Peter’s files 

in Bloom (1970). The corpus contained 25148 lines, 206942 tokens (including utterance-

boundary symbols) and 156646 tokens (excluding these symbols), and 3086 words.  

The values of the overall left-context (IL-l) and the right-context mutual 

information (IL-r) were computed for this corpus, using the formulas in (89) and (90), 

respectively. The values were, 100 and 3076, respectively. Using the formulas in (88), the 

head-direction probabilities were as follows: 
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(91) a. 97.0
1003076

3076
))(( ≈

+
=iHLP  

b. P(L(Hf )) 
�  1 – 0.97 �  0.03 

In other words, these probabilities indicate that in English the majority of words share 

more mutual information with their right context than with their left context. 

7.1.2.3 Japanese 
  

To put the head probabilities computed for English in the previous section in a 

more meaningful perspective, the same cue-based algorithm was run on Japanese corpora 

from the CHILDES database. The corpus was the transcription of the adult’s child-

directed speech in the child Ryookun’s corpus in Miyata-Ryo. The corpus contained 

26926 lines, 41409 tokens, and 2492 words. The corpus was preprocessed as described in 

subsection 7.1.2.1 above. 

The values of the overall left-context (IL-l) and the right-context mutual 

information (IL-r ) were computed for the Japanese corpus, using the formulas in (89) and 

(90), respectively. The values were, 2200 and 575, respectively. Using the formulas in 

(88), the head-direction probabilities were as follows: 

(92) a 21.0
2200575

575
))(( ≈

+
=iHLP  

b. P(L(Hf )) 
�  1 – 0.21 �  0.79 

In other words, these probabilities indicate that in Japanese the majority of words share 

more mutual information with their left context than with their right context. 

7.12.4 German 
  

To further test the efficiency and the language-independent nature of the 

probabilistic cue-based algorithm proposed for head parameter, it was run on German 
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corpora. The corpus was extracted from the child Kristin’s files in the CHILDES 

database. It contained 70707 lines, 200535 tokens, and 4949 words. The corpus was 

preprocessed as described in subsection 7.1.2.1 above. 

The values of the overall left-context (IL-l) and the right-context mutual 

information (IL-r ) were computed, using the formulas in (89) and (90), respectively. The 

values were, 1856 and 5462, respectively. Using the formulas in (88), the head-direction 

probabilities were as follows: 

(93) a. 75.0
18565462

5462
))(( ≈

+
=iHLP  

b. P(L(Hf )) 
�  1 – 0.75 �  0.25 

In other words, these probabilities indicate that in German, like in English though with 

different probabilities, the majority of words share more mutual information with their 

right context than with their left context. 

7.1.3 General Discussion and Conclusion 
 
 Figure 7 summarizes the head-direction probabilities for the three languages. 

These probabilities could be interpreted in different ways. 

The first implication is that English is �  0.97 head-initial, and �  0.03 head-final. 

Japanese is �  0.21 head-initial and �  0.79 head-final. German is �  0.75 head-initial and �  

0.25 head-final. The English head probabilities are clearly consistent with the commonly 

held analysis of English as head-initial. Similarly, German is predominately head-initial, 

yet with a lower probability than English. Japanese is predominately head-final, and is 

almost a mirror image of German.  
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English 0.97 0.03 

Japanese 0.21 0.79 

German 0.75 0.25 

 
 

Figure 7: Summary of head-direction probabilities 
in English, Japanese, and German 

 

 The second possible interpretation of these probabilities is to think of them as 

measures of head probabilities as well as word-order flexibility. On this interpretation, 

these probabilities predict that word order in English should be more fixed than in 

Japanese and German. Accordingly, higher probabilities in Figure 7 could signify the 

basic or default word order, and the lower ones signify the derived word order, assuming 

that this distinction exists in the first place.  

 Another possible interpretation is that these probabilities average the dependency 

direction of the word types in the input. On this interpretation, these probabilities 

summarize the distributional properties of the words in a language. That is, these 

probabilities indicate that some word types have right-side dependency, and others left-

side dependency, in accordance with these probabilities. They could also mean that some 
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words have these two kinds of dependency in accordance with the head probabilities for 

this language. 

 All these are legitimate and interrelated interpretations. Their significance for this 

dissertation is that with a simple cue-based, language-independent algorithm for 

probabilistic head-parameter setting, we are able to differentiate languages, vis-à-vis head 

direction, using only utterance boundaries as cues, and a small-size, untagged corpus.  

The typological and/or psycholinguistic implications of these probabilities for 

Japanese and German, and other languages, other than English, are not discussed any 

further in the dissertation. Further investigation is still required in order to establish these 

probabilities, on the one hand, and what they reflect about the structural properties of 

these languages, on the other. Moreover, the scope of parametric variation in human 

languages would require more cues that are able to capture the idiosyncrasies of 

individual languages. Their implications for the automatic acquisition of the structural 

properties of English are considered in the following chapters. It is shown in the 

following chapter that these probabilities could be used to bootstrap another algorithm for 

the identification of predicates and arguments in English. 
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7.2 MI -Based Categorization 
 

This section presents an algorithm for the initial categorization of the input into 

two main classes, i.e., arguments and predicates. The main idea behind this algorithm is 

to categorize words based on their distributional similarity as measured in terms of their 

co-occurrence with a set of cues. Cues are extracted using the Distributional Cue 

Extraction Procedure in Section 5.2 in Chapter 5. Similar to the first algorithm, the 

association between these cues and other words is measured in terms of mutual 

information. It is shown below that this algorithm is able to identify a subset of the 

arguments and predicates in the input with a relatively high level of accuracy. 

7.2.1 Algor ithm 

7.2.1.1 Category Cues 

 The central part of this algorithm is to extract the set of relevant cues in the input 

according to the criterion in (38) repeated below. 

(38) Definition of Category Cues (K) 
The set of Category Cues, K, is the smallest subset of the elements 
{ k1,...,km} in a corpus R such that every element in R occurs at least 
once with at least one member in K.  

 
This criterion is the basis of a procedure that makes use of the highly frequent words in 

order to approximate K in the following manner, as introduced earlier. We start with 

building a decreasing frequency profile for all the words { w1,…,wn}  in a corpus, R, where 

w1 is the first most frequent word in R, w2 the second most frequent, and so on. The set of 

cues is K = { w1,…,wm} , such that if we add up the number of words, X1, that co-occur 

with w2 and the number of words, X2, that co-occur with w2, until the m-most frequent 

word, wm, the number of words [X1+X2+…+Xm] converges to an order, � , of n, where n is 
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the number of word types in the corpus. Only the first approximation, i.e., �  = 1, is 

implemented in the present algorithm. In pseudo-code, this procedure is as follows: 

 (40)  Procedure for  Distr ibutional Cue Extraction 
Function SUBSET(K,R) 

1. K  := Ø; 
2. for  i := 0 to n do; �  := (1,2,…); 
3. get the number of word types n in R; 
4. get the frequency of wi , f(wi) in R ;  
5. build a decreasing frequency profile F:= { f(wi) >  f(wi+1) >…f(wn)} ; 
6. get the number of words |wi -| that immediately precede wi ;  
7. get the number of words |wi+ | that immediately follow wi ; 
8.  Xi := |wi -| + |wi+ | ;  

9.  Xi_total := �
=1i

iX ; 

10.  if  Xi_total := �
=1i

iX := � n 

11.  return K := { wi} ;  
12.  else 
13.   repeat 
14.    i := i +1; 

15.   until  (Xi_total := �
+

=

ki

i
iX

0

>= � n, 

16.     Xi_total := �
−+

=

1)(

0

ki

i
iX < � n); 

17.  return K := { wi,..,wi+k}   
 

7.2.1.2 MI -based Categorization 

Once K is identified, it can be utilized in word clustering, and perhaps other tasks, 

using different measures of co-occurrence. The algorithm proposed here uses K for 

categorization in the following manner.  

Let the Category Cues for corpus R be KR �  { k1,…,km} , where m is the number of 

words in KR. The distributional properties of words in R are captured in terms of their 

cued bigrams (henceforth, K-bigrams) with the members of KR.32 For every word Wi in R, 

we first extract its K-bigrams. This means that there are two possible K-bigram types: left 

                                                   
32 Henceforth, the terms ‘bigram’  and ‘K-bigram’  will be used interchangeably, unless otherwise specified. 
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and right. The left bigram for Wi is that where Wi is immediately preceded by a word in 

KR. The right bigram is that where Wi is immediately followed by a word in KR. It is 

possible that some words could have both types or either. That is, the maximum number 

of K-bigrams for a word Wi is 2m, m on each side, and the minimum is 1, either left or 

right. This is visualized in Figure 8. 
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Figure 8: Representation of Distributional Contexts 

The hypothesis is that each K-bigram indicates a lexical category of some type. 

That is Bigram1 corresponds to Category1, and Bigram2 corresponds to Category2, and so 

on. This means that there are 2m possible categories, m on each side. The membership of 

a word in a certain category is established in terms of MI in the following fashion. 

We first compute the MI for every K-bigram. For example, the MI of the left and 

right K-bigrams for a word Wi is thus computed as given in (94a) and (94b), respectively.  

(94) a. 
)()(

),(
log);( 2

ii

ii
ii WPkP

WkP
WkI =  

      b. 
)()(

);(
log);( 2

ii

ii
ii WPkP

kWP
kWI =  
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Then, for each word Wi, we pick the bigram with the highest MI on each side, if 

available. That is, each word could either have two bigrams with highest MI, one on each 

side, or just one on either side. For example, if a word Wi occurs in Bigramx, and this 

bigram has the highest MI among the left bigrams, it is concluded that Wi belongs to 

Categoryx, and so on. If Wi also occurs in Bigramy, and this bigram has the highest MI 

among the right bigrams, then we conclude that Wi belongs to Categoryy. This means that 

Wi belongs to two categories, x and y. In case a word has two bigrams on the same side 

with the same MI, and they happen to be the bigrams with the highest MI on this side, 

both bigrams are used in categorization. 

The decision that a given word belongs to one or more categories is probabilistic. 

Category probabilities for a word are computed in terms of the MI of its K-bigrams in the 

following manner. Given a word Wi with Bigramx having the highest MI among the left 

bigrams of Wi, and Bigramy with the highest MI among the right bigrams of Wi, the 

probability that Wi belongs to Categoryx is computed by dividing the MI of Bigramx by 

the sum of the MI of Bigramx and Bigramy. The probability that Wi belongs to Categoryy 

follows naturally from the axioms of probability theory. This is formalized as follows:33 

(95) a. 
)()(

)(
),(

yx

x
xi BigramMIBigramMI

BigramMI
CatWP

+
≈  

 b. P(Wi, Caty) 
�  1 – P(Wi, Catx) 

 Using these category probabilities, we can capture the lexical ambiguity of words 

that belong to more than one category, as it is shown below. Given the probability 

                                                   
33 If there are two bigrams on one side with equivalent highest MI, the probabilities of possible categories 
for the target word are computed in a similar fashion by dividing by the sum of the MI in all the related 
bigrams.  
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distribution of these categories, we can easily identify the main, as well as, peripheral 

category to which a given word belongs. 

7.2.1.3 Category Compression 

The categorization method described above is expected to yield all the logically 

possible categories given the number of cues. In principle, it is possible that two or more 

of these initial bigrams/categories are equivalent, which means that they can be collapsed 

into one more abstract and general class. The equivalence of two initial 

bigrams/categories is a function of the equivalence in the set of Category Cues. Two or 

more bigrams/categories are equivalent if their cues are equivalent. The equivalence of 

two or more cues can be simply established, like other words, using the same strategy 

described above.  

However, it is likely that the bigrams where a cue occurs have negative MI. In 

this case this strategy cannot be used, and equivalence is established simply using the 

same MI-based method used in the head-parameter algorithm. That is, for every cue, ki, 

we determine its dependency direction using the MI of its bigrams on the two sides. We 

first add up the MI of the bigrams where it is the left member (right dependency), and the 

MI of the bigrams where it is the right member (left dependency). We then compute the 

probability of its left dependency P(ki(L)) by dividing the sum of the MI of its left 

bigrams by the sum of the MI of both types of bigrams. The probability of its right 

dependency P(ki(R)) follows from the axioms of probability theory. A cue is mainly left 

dependent if P(ki(L)) is significantly larger than P(ki(R)). This is formalized as follows: 
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(96) Let K = { k1,…,km}  be the set of cues, 
Let { k1,L,…, km,L}  be the sum of the MI of the left bigrams of { k1,…,km} , 
respectively, 
Let {  k1,R,…, km,R}  be the sum of the MI of the right bigrams of { k1,…,km} , 
respectively, then 

RiLi

Li
i kk

k
LkP

,
))((

,

,

+
=  

P(ki(R)) = 1 – P(ki(L)) 

Having established the equivalence of two or more cues, we then collapse their 

corresponding bigrams/categories into one class. That is, if we have two 

bigrams/categories, Bigramx/Categoryx and Bigramy/Categoryy which have the cues kx 

and ky as their left members, respectively, Bigramx/Categoryx and Bigramy/Categoryy are 

equivalent if and only if kx and ky are equivalent, given (96). The same applies if the cues 

are the right members.  

Once the new class is determined, the new category probabilities of the words in 

the new class are the sum of their old probabilities before compression. For example, if a 

word Wi belongs to categories Categoryx and Categoryy with probabilities Px and Py , 

respectively, before compression, the probability of the membership of Wi in the new 

class is the sum of Px and Py. This way the category probability of any word that belongs 

to only one category remains intact, i.e., 1. 

It is important to clarify the position of this component of category compression 

in the overall categorization algorithm. Firstly, this component is optional. Its inclusion in 

the algorithm depends on the level of granularity we intend for the categories. I will  

compare below the output of the algorithm with and without this component in order to 

show its effect on the level of category granularity. Secondly, its order of application 

within the algorithm depends on how we want the categorization to proceed, i.e., bottom-

up or top-down. In the first case, compression is applied after the initial categorization 
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has already been applied. In the other case, compression is applied before the initial 

categorization. Given the way the algorithm works, the order of application is neutral, 

and both orders should converge to the same classes.  

7.2.2 Experiment 

7.2.2.1 Corpus Descr iption 

The categorization algorithm described in the previous section was tested on English 

using the same Peter corpus used in the head-parameter algorithm. Changes to the corpus 

were minimal. Every line in the corpus was considered an utterance. The utterance-final 

punctuation (i.e. ‘ .’ , ‘ !’ , and ‘?’ ) was changed into a single utterance-final symbol (i.e. #), 

and an utterance-initial symbol (i.e., $) was added. The corpus contained 25148 lines, 

156646 tokens, and 3086 words.  

7.2.2.2 Results 

The algorithm was applied in three phases. The first phase built a decreasing 

frequency profile for the words in the corpus. Using the criterion in (40) above, the 

second phase established the set of Category Cues, K. In the third phase, K was used to 

categorize words, using (95), and assign probabilities to their membership in possible 

categories, using (96). 

7.2.2.2.1 Category Cues 

Table 21 shows the first ten most frequent words in the decreasing frequency 

profile built in the first pass for the words in the corpus. 

In the second phase, the algorithm converged to the first order of N after the 

fourth most frequent word in the corpus. Accordingly, the first-order K contained the 

words { the, you, a, it}  as its members. The number of words that co-occurred with these 
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cues was initially 3382, which were distributed among these cues as shown in Table 22. 

It is clear from Table 22 that, though ‘ the’  is less frequent than ‘you’  in the corpus, as 

given in Table 21, ‘ the’  occurred with more words than ‘you’  did. 

Word Frequency 

you 7783 
the 6256 
it 4502 
a 3076 
I 2769 
that 2181 
to 2334 
is 2130 
in 2123 
that's 1907 

 

Table 21: The 10 most frequent words in the corpus 
 

K Co-occ. Set 

the 1093 
you 810 

a 806 
it 673 

Total 3382 
 

Table 22: First-Order Set of Cues 
 

Given these 4 cues, the maximum number of K-bigrams for a word Wi is 2×4 = 8, 4 on 

each side, and the minimum is 1, either left or right, as discussed above. Each of these 

cues results in two types of bigrams, i.e., left and right. Remember that each bigram 

corresponds to a possible category. This means that the maximum number of categories 

we can infer from these bigrams is 8.  

7.2.2.2.2 K-Bigrams 

In the third phase, the bigrams of words in the corpus with the cues in Table 22 

were extracted and their MI’s were computed, as described above. As a result of filtering 
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out bigrams with negative MI, the number of words was reduced from 3382 to 1600, 

which constitute �  1600/3086 �  0.52 of all the words in the corpus. Note that, negative 

MI is excluded on the basis that it indicates that the members of the bigram tend not to 

co-occur. Table 23 shows some of these bigrams and their respective MI’s. In Table 23, 

‘_’  is used to indicate the position of the target word in the bigram, a blank is used to 

indicate zero or less MI. Bigram1 is that where ‘ the’  is the left member, Bigram2 is that 

where ‘you’ is the left member, and so on. 

Bigrams� 
 
Bigram1 

 
Bigram2 

 
Bigram3 

 
Bigram4 

 
Bigram5 

 
Bigram6 

 
Bigram7 

 
Bigram8 

 
Cues� 

 
the_ 

 
you_ 

 
a_ 
 

it_ 
 

_the 
 

_you 
 

_a 
 

_it 
 

be  0.04   0.60  2.72  
box 4.31  1.9      

cover 4.26       2.33 
found  3.41   1.55 0.08 2.16 3.62 
go  1.66  0.13     
hold  1.13   2.59 0.32  3.5 
knock  2.19   1.07   3.14 

like  2.71  0.09 0.1  3.49 0.57 
monster 1.9  1.9      
off    3.4 1.51    
out    2.16 1.3    
park 4.95    1.37    

quiet   2.7 2.75     
ride 0.16 1.01 3.88  3.27  0.92  
see  2.0   1.52 0.37 0.81 2.26 
should  1.4   0.06    
small 2.24  3.75      

spray 3.07 2.61    2.61   
take  1.52   2.49  3.43 3.1 
teddy 3.66  3.09      
telephone 
 

4.23 
  

3.45 
      

 
Table 23: Examples of words and the MI of their K-Bigrams 
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7.2.2.2.3 Initial Categories 

These 1600 words were then categorized using the strategy described above. 

Accordingly, for each word we pick the K-bigram with the highest MI among the left 

bigrams, if available, and the K-bigram with the highest MI among the right bigrams, if 

available. For example, for the word ‘be’  in Table 23, Bigram2 has the highest MI among 

its left bigrams, and Bigram7 among its right bigrams. Consequently, it is concluded that 

‘be’  belongs to the two categories that correspond to these two bigrams, i.e., Category3 

and Category7. As expected, the number of categories was 8. Table 24 shows the number 

of words in each category and their ratios relative to the 1600 words, and some examples 

of the words in each category.  

The distribution of words among these categories deserves some observations. 

The first clear and important observation is that words that belong to the left-associative 

categories (i.e., Cat1, Cat2, Cat3, and Cat4) represent 1404/1600 �  0.88 of all the 

categorized words. Words that belong to the right-associative categories (i.e., Cat5, Cat6, 

Cat7, and Cat8) represent 524/1600 �  0.33 of all the words categorized. Words that are 

both left- and right-associative comprise 328/1600 �  0.21 of all the words categorized. 

This result is consistent with the results obtained from the head-parameter algorithm, 

which established English as mainly head-initial/head-left. Consequently, it is highly 

predictable that more words are left- than right-dependent.  

Secondly, Cat1 and Cat2 include more than half, 0.54, of the words categorized, 

1600.  

Thirdly, words in categories Cat1 and Cat3 are mainly nouns (e.g., airplane, 

alligator, bath, cat, etc…) and some attributive adjectives (e.g., sweet, green). This is 
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natural because these are the categories that correspond to the two bigrams whose left 

members are the and a, respectively. 

Cat
. 

Count Ratio Examples 

Cat1 443 0.28 
 
 
 
 
 
 

abcs air airplane alligator alphabet ambulance animals annual apartment apple 
bathroom beach bear bed bedroom beds bell best biggest bike bouncing church 
closet country cover cows cube diaper dogs door eye family first game grass 
green heat horse kind last mirror mommy park people pillow screw screws sill 
sky sleeping spoons spray starting store stuff suitcase suitcases tag taillights 
teddy telephone telescope things tigers toilet toys, etc… 

Cat2 351 0.22 
 
 

 
 
 
 
 

always already almost anyway are ate bang bet blow break bringing calling can 
coughing could couldn’t count did didn’t eat eating fitting forgot have haven’t 
having hit knock knocked knocking know just live lock lost missed move moved 
mustn’t need open opened opening ought pack park parking rip saw see seem 
singing smell speak speaking squeeze spread talk tear understand use using 
wash were wouldn’t write writing wrote, etc… 
 

Cat3 423 0.26 
 
 

 
 
 
 
 

babysitter bacon barrel barrette bat bath cat celery change chest chip choice 
crayon cream dog doggie donkey drink dresser drill dump earth feeling finger 
giraffe kiss kite lamb lemon letter lot mafia mail man map mess monkey monster 
noise night number piece pile pill picnic picture plant plastic plug pocket point 
ride road round stick strange sweet thumb tire tissue toy traffic wall etc… 
 

Cat4 187 0.12 
 
 
 
 
 
 

actually alone along anymore apart around away back because before behind 
belong belongs broken by called came closed comes coming cost disappear 
does doesn’t down empty fall fit for from gets goes has hasn’t hurt in inside into 
is isn’t itches keeps look looks made near out outside over ran roll says scare 
seems to turns under was wasn’t went without won won’t work would … 
 

Cat5 125 0.08 
 
 
 
 
 

about answer around at bat bend between blow bringing bouncing by carrying 
change chasing cleaning clicking count down drinking eating fasten fitting 
flushed forgot green hears hit hits hitting holding in inside into latch likes mash 
moving of off onto opening out outside over park point ride rides roll round scare 
screws should smell to under use working etc… 

Cat6 99 0.06 
 
 
 

afraid after ago are ask asked before behind bet can could did distract disturb 
disturbing fit hope if protect showed spoil spray taught tells then thought tickle 
told understand were will would yesterday etc… 

Cat7 99 0.06 
 
 
 

almost always as be been being bought brought called caught cost finding for 
get gets goes got gotten had has have having hear heard just like live lock looks 
lost made mail need needs says singing smiles store using wait etc… 

Cat8 201 0.13 
 
 

 
 
 
 

actually ate bang believe blowing bother break call closing cook cover covered 
cut decorate does doing doubt drank eat empty feel feeling fill filled filling flush 
fold folded forget found gave guess heat hid hide hiding mess mixing move open 
parking pour pretend push pushed pushing reach rip screw screwing shaved 
sing spill spit squeeze stir tear tearing unwrap unzipped wash etc… 
 

 

Table 24: The counts, ratios, and examples of words in the 8 categories 
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Fourthly, words in the other categories are mainly verbs, adverbs (e.g., actually, 

ago, always, already, almost, etc..), and prepositions/particles (e.g., of, off, over, out, in, 

into, by etc…).  

Fifthly, some words belong to more than one category. For example, the word 

cover  belongs to categories Cat1 and Cat8, spray and mail are members of both Cat1 and 

Cat7, screws belongs to Cat1 and Cat5. This captures the fact that these words can be both 

nouns and verbs.  

Finally, the categories in Table 24 also capture the fact that the word open can be 

both an adjective and a verb, hence it belongs to Cat1 and Cat2. 

An expected result in the output is that the cues themselves could not be 

categorized by the algorithm. This is natural since the members of K do not tend to co-

occur, and even if some of them do, their co-occurrence is rare and would result in 

negative MI. This means that category compression should be implemented as described 

in (96) above. 

7.2.2.4 Category Probabilities 

In order to establish the degree of membership of a given word in any of these 

categories, category probabilities were then assigned to every word as proposed in (95) 

above. Table 25 shows part of the categorized words and the probabilities of their 

membership in the corresponding categories. (The probabilities in Table 25 were rounded 

up to the second digit.)  
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Category Probabilities Word 

Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 

airplane 1        
alligator 1        
almost  0.45     0.55  
always  0.38     0.62  
apple 1        
around    0.56 0.44    
ask  0.74    0.26   
ate  0.58      0.42 
bend  0.45   0.55    
bouncing 0.5    0.5    
bring  0.34      0.64 
by   0.32 0.68     
called   0.22    0.78  
change   0.45  0.55    
closed    0.48    0.52 
comes   0.56 0.44     
could  0.63    0.37   
cover 0.65       0.35 
cry  0.89    0.11   
decided  1       
did  0.25    0.75   
do  0.32    0.68   
dog   1      
drink   0.31     0.69 
fly   0.57    0.43  
green 0.9    0.1    
grow    1     
hungry   0.64   0.36   
in   0.34 0.66     
mail   0.57    0.43  
mess   0.80     0.20 
off    0.69 0.31    
out    0.62 0.38    
over    0.75 0.25    
park 0.78    0.22    
screw 0.59       0.41 
screws 0.5    0.5    
spray 0.46     0.54   
store 0.85      0.15  
use  0.24   0.76    
want  0.82     0.18  

 
Table 25: Category Probabilities of some words in the corpus 
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The category probabilities in Table 25 are more indicative of the performance of 

the algorithm. The most obvious examples are words that are always mono-categorical 

(i.e., words that belong to only one category). For example, the membership probability 

of words that are always nouns/nominal (e.g., airport, alligator, apple, and dog) in Cat1 

and Cat3, which contain mainly nouns, is always 1. The same applies to words that are 

always verbs/predicative (e.g., decided and grow) with a full membership in Cat4 and 

Cat5, respectively, which include mainly predicative or non-nominal words. On the other 

hand, these probabilities reveal the poly-categorical nature of some words (i.e., words 

that belong to more than one category). An interesting example is the word bouncing, 

which belongs equally to the nominal category Cat1 and the predicative category Cat5. To 

understand the significance of this result to the performance of the proposed algorithm, I 

consider the distribution of this word in the corpus in more detail. 

  The word bouncing occurs only twice in the corpus (97a.b.). (Note: As 

mentioned above, $ and # indicate utterance boundaries.) 

(97)   a. $ are you bouncing the ball # 

b. $ follow the bouncing ball # 

In the first utterance, bouncing is a regular verbal –ing form. In the second utterance, 

bouncing functions as an attributive adjective. The intricacies and implications of this and 

similar cases are further discussed in the Discussion and Conclusion Section at the end of 

the chapter. 

 Another interesting example in this context is the word green. As the probabilities 

in Table 25 show, this word belongs to the nominal Cat1 with a 0.9 probability, and to the 

predicative Cat5 with a 0.1 probability. This word occurs 24 times in the corpus. It occurs 
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predicatively in only one context, and attributively in all other contexts. (98) shows some 

of these contexts. 

(98) a. $ is it green # 

b. $ the green barrel # 

c. $ the green one # 

d. $ the other green one is inside the blue one # 

e. $ what happened to the green chair # 

f. $ a green one #  

g. $ a green one # 

h. $ that's a green lizard # 

The obvious observation about the behavior of this word is the proportionality of its 

category probabilities and its distribution in the corpus.  

  Similar remarks can be made about other poly-categorical words: (1) words that 

function as verbs as well as nouns (e.g., cover, drink, fly, mail, mess, park, screw, screws, 

and store), and (2) words that can function as prepositions and particles (e.g., around, off, 

out, and over).  

7.2.2.2.5 Category Compression 

 It is clear from Tables 24 and 25 that some categories can be collapsed into more 

comprehensive classes. For example, Cat1 and Cat3 contain mainly nouns and attributive 

elements. Thus it is possible to collapse these two categories into a more general and 

abstract class of nominal words (i.e., nouns and words that occur prenominally). Other 

categories can be similarly compressed. Remember that category equivalence is a 

function of cue equivalence. However, it was mentioned above that the cue words (i.e., 

{ the, you, a, it} ) were not among the words that were categorized by the algorithm. 

Accordingly, these words were categorized according to the equivalence procedure in 
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(96) above. According to this procedure, the equivalence of two cues is the function of 

the aggregate MI of their left and right bigrams. 

 After applying this procedure to the set of cues, their MI and dependency 

probabilities were as given in Table 26. 

K 
MI(L ) 

 
M I (R) 

 
P(L) 

 
P(R) 

 
the 577 2301 0.2 0.8 
you 702 720 0.49 0.51 
a 344 2248 0.13 0.87 
it 814 581 0.58 0.42 

 
Table 26: The right and left MI and association probabilities for cues 

 

As expected, the and a are almost always right-associative, you and it are almost equally 

left- and right- associative. Given this, the 8 initial categories described above can be 

compressed as follows. Given that the and a are both right-associative, it is concluded 

these two cues are equivalent. Accordingly, the left-associated categories dependent on 

the and a, i.e. Cat1 and Cat3 could be collapsed into the more general class, Cat1,3, that 

comprises these two categories. Similarly, the right-associated categories dependent on 

these two words (i.e., Cat5 and Cat7) are conflated into one class, Cat5,7.  

On the other hand, you and it, are equally left- and right-associative. 

Consequently, all the categories associated with these two words on both sides (e.g., Cat2, 

Cat4, Cat6, and Cat8) are equivalent, and can be collapsed into a new class, Cat2,4,6,8. This 

means that as a result of category compression, the initial 8 categories have been reduced 

to just 3 classes, i.e., Cat1,3, Cat2,4,6,8, and Cat5,7. The new category probabilities for every 

word that previously belonged to more than one category were then computed using (96). 

Tables 27 and 28 show the new categories and their updated probabilities, respectively. 
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Cat. Count Ratio Examples 

Cat1,3 866 0.54 
 
 
 
 
 
 
 
 
 
 
 
 

abcs air airplane alligator alphabet ambulance animals annual 
apartment apple bathroom beach bear bed bedroom beds bell best 
biggest bike bouncing church closet country cover cows cube diaper 
dogs door eye family first game grass green heat horse kind last mirror 
mommy park people pillow screw screws sill sky sleeping spoons spray 
starting store stuff suitcase suitcases tag taillights teddy telephone 
telescope things tigers toilet toys babysitter bacon barrel barrette bat 
bath cat celery change chest chip choice crayon cream dog doggie 
donkey drink dresser drill dump earth feeling finger giraffe kiss kite lamb 
lemon letter lot mafia mail man map mess monkey monster noise night 
number piece pile pill picnic picture plant plastic plug pocket point ride 
road round stick strange sweet thumb tire tissue toy traffic wall etc… 
 

Cat2,4,6,8 838 0.53 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

always already almost anyway are ate bang bet blow break bringing 
calling can coughing could couldn’t count did didn’t eat eating fitting 
forgot have haven’t having hit knock knocked knocking know just live 
lock lost missed move moved mustn’t need open opened opening ought 
pack park parking rip saw see seem singing smell speak speaking 
squeeze spread talk tear understand use using wash were wouldn’t 
write writing wrote, actually alone along anymore apart around away 
back because before behind belong belongs broken by called came 
closed comes coming cost disappear does doesn’t down empty fall fit 
for from gets goes has hasn’t hurt in inside into is isn’t itches keeps look 
looks made near out outside over ran roll says scare seems to turns 
under was wasn’t went without won won’t work would afraid after ago 
are ask asked before behind bet can could did distract disturb disturbing 
fit hope if protect showed spoil spray taught tells then thought tickle told 
understand were will would yesterday actually ate bang believe blowing 
bother break call closing cook cover covered cut decorate does doing 
doubt drank eat empty feel feeling fill filled filling flush fold folded forget 
found gave guess heat hid hide hiding mess mixing move open parking 
pour pretend push pushed pushing reach rip screw screwing shaved 
sing spill spit squeeze stir tear tearing unwrap unzipped wash etc… 
 

Cat5,7 
 

224 0.14 about answer around at bat bend between blow bringing 
bouncing by carrying change chasing cleaning clicking count 
down drinking eating fasten fitting flushed forgot green hears hit 
hits hitting holding in inside into latch likes mash moving of off 
onto opening out outside over park point ride rides roll round 
scare screws should smell to under use working almost always 
as be been being bought brought called caught cost finding for 
get gets goes got gotten had has have having hear heard just 
like live lock looks lost made mail need needs says singing 
smiles store using wait etc… 
 

 

Table 27: Compressed Categories 
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Category Probabilities Word 

Nominal Predicative 

airplane 1  
alligator 1  
almost  1 
always  1 
apple 1  
around  1 
ask  1 
ate  1 
bend  1 
bouncing 0.5 0.5 
bring  1 
by 0.32 0.68 
called 0.22 0.87 
change 0.45 0.55 
closed  1 
comes 0.56 0.44 
could  1 
cover 0.65 0.35 
cry  1 
decided  1 
did  1 
do  1 
dog 1  
drink 0.31 0.69 
fly 0.57 0.43 
green 0.9 0.1 
grow  1 
hungry 0.64 0.36 
in 0.34 0.66 
mail 0.57 0.43 
mess 0.80 0.20 
off  1 
out  1 
over  1 
park 0.78 0.22 
screw 0.59 0.41 
screws 0.5 0.5 
spray 0.46 0.54 
store 0.85 0.15 
use  1 
want  1 

 
Table 28: Category Probabilities 
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It is obvious in Table 27 that the two largest classes Cat1,3 and Cat2,4,6,8 correspond 

to nominal and attributive elements, and predicative elements, respectively. Cat5,7, on the 

other hand, contains mainly words that could function predicatively. For ease of reference 

Cat2,4,6,8, and Cat5,7 will be referred to as Predicative, and Cat1,3 as Nominal. Accordingly, 

Table 28 shows the updated category probabilities of the words in Table 25.  

Having established category probabilities, this information output by the 

algorithm was then used in tagging and chunking parts of the corpus in the following 

manner.  

(99) a. Tag word W as Predicative everywhere in the corpus if P(W = Predicative) = 1 

 b. Tag word W as Nominal everywhere in the corpus if P(W = Nominal) = 1 

 c. Transform the tag Predicative to Nominal in the context (the|a)_ 

 d. Merge any sequence of nominal expressions into one nominal chunk 

e. Mark the and a as the left boundary of a nominal chunk (given the right-

associative nature of these two cues). 

7.2.3 Evaluation 

The overall performance of the implementation was calculated in terms of 

precision and recall (Manning and Schütze, 2003:267-269). Precision is defined 

as
fptp

tp

+
, where tp (true positives) are the cases the system got right, and fp (false 

positives) are the cases the system got wrong. Recall is defined as 
fntp

tp

+
, where fn 

(false negatives) are the correct cases that were not captured by the system. 

In order to compute the precision for the learner’s performance in categorization, 

a POS-tagged version of the Peter corpus in the CHILDES database was used. The 
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categorization algorithm presented in this section managed to collect information about 

two main classes: Predicative and Nominal, in addition to Nominal Chunks. Accordingly, 

the tags in the corpus were collapsed into these two classes in the following manner. 

Verbs, prepositions, predicative adjectives, and particles were merged together as 

Predicative. This class contained 66733 tokens and 1163 types. Nouns, pronouns, 

attributive adjectives, and determiners were merged together as Nominal. This class 

contained 64311 tokens and 1374 types.  

The learner was able to identify 722 predicative types totaling 64049 tokens, and 

1018 nominal types totaling 39045 tokens. Table 29 summarizes this information, in 

addition to Nominal Chunks, that was garnered by the algorithm. Table 30 shows the 

precision and recall ratios for the algorithm’s performance in identifying Nominal and 

Predicative elements. 

Potential Tag Types Correct (tp) Incorrect (fp)  Tokens Correct (tp) Incorrect (fp) 

Predicative 722 693 29 64049 60206 3843 

Nominal 1018 1018 0 39045 39045 0 

Total 1740 1711 29 103094 99251 3843 

Nominal Chunk - - - 21898 - - 

 
Table 29: Summary of knowledge acquired by CBL-2 

Potential Tag Type Precision Type Recall Token Precision Token Recall 

Predicative �  96% �  60% � 94% � 90% 

Nominal 100% � 74% 100% � 61% 

Average � 98% � 67% � 97% � 75.5% 

Nominal Chunk - - 100% - 

 
Table 30: Precision and Recall for CBL-2 

 These results reflect some properties of this distributionally-bootstrapped learner. 

The first is that, similar to the semantically-bootstrapped learner, this learner shows some 
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bias towards learning nominal expressions than predicative expressions, as reflected by 

the type recall ratios  However, this bias is not as strong as it was in the first learner. The 

other property is that, though this learner was not provided with any initial cues, the type 

and token recall ratios for this learner are much higher than those for the first learner, 

which was given names of things and people as initial cues. Note that in the first learner 

nouns were not grouped with other nominal elements, and verbs were not grouped with 

other predicative elements, as it is the case with the second learner. 

7.2.4 Discussion and Conclusion 

In this section, I have presented an algorithm for the initial categorization of the 

input into two main classes, i.e., arguments and predicates. The main idea behind this 

algorithm was to categorize words using their distributional similarity as measured in 

terms of their co-occurrence with a set of cues. These cues were identified in terms of 

The Distributional Cue Extraction Procedure. Only the 1st-order approximation of cues 

was utilized in binary categorization. The distributional similarity of words was measured 

in terms of their distribution with these cues. The strength of association between these 

cues and other words was measured in terms of mutual information, which was then used 

to compute the category probabilities of these words. It was shown that this algorithm 

was able to identify a subset of the arguments and predicates in the input with a relatively 

high level of accuracy. It was also demonstrated that this algorithm was able to capture in 

probabilistic terms the fact that some words belong to more than one category, here 

arguments and predicates, with different degrees of membership. This algorithm has also 

demonstrated that categories can be identified in the input using a small set of cues that 

can be distributionally learned from the input. The performance of this first-
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approximation algorithm stresses the central role of the input and distributional 

mechanisms in learning. In the following section, I show how the knowledge yielded by 

this algorithm can be used in frame identification. 

7.3 MI-Based Frame Identification 
 

This section details the frame identification algorithm in CBL-2. This algorithm 

operates according to the following assumptions.  

There is no predefined set of possible frames. This algorithm is completely 

dependent on the information yielded by the head-direction and categorization 

algorithms. The head algorithm has established English as a head-initial language. 

Accordingly, the subcategorization algorithm uses this information to limit its search 

space to the right-hand context in order to find dependents, which reduces the search 

space significantly. The categorization algorithm provides the subcategorization 

algorithm with information about possible predicates, arguments, and chunks in the 

corpus. Because of this dependence, only words that were tagged by the categorization 

algorithm are visible to the subcategorization algorithm. The frames identified by this 

algorithm are very general and are not formalized in the conventional terms associated 

with subcategorization frames, i.e., verbs, verb phrase, prepositional phrase, etc. Rather 

they are described in the binary distinction between predicative and nominal expressions 

as established by the categorization algorithm. It assumes a probabilistic approach to the 

distinction between complements i.e., arguments required by a predicate, and adjuncts, 

i.e., elements that occur freely with a predicate. Accordingly, this distinction is captured 

in terms of a probability function over the kinds of dependents expected with a predicate. 
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This algorithm works with the surface structure with no presuppositions about any deeper 

levels.  

7.3.1 Algorithm 

The algorithm used in frame identification is a trivial specification of the 

distributional cue-based procedure for cue extraction introduced in (38) above. 

Accordingly, the set of possible frames in a given input is expected to be a subset of the 

contexts where predicates, in general, and verbs, in particular, occur. Given this, the set 

of possible frames are generally approximated as given in (53), repeated below. 

(53) Frame Cues (1) 
Let P = { p1,…, pn}  be the set of possible predicates in a corpus R 
Let C = { c1,…,cm}  be the set of contexts where the members of P 
occur, then the set of possible frames in R is the smallest subset, 
Cf, of C such that every predicate in P occurs at least once in at 
least one context in Cf. 
 

Taking the above assumptions into consideration, the algorithm identifies frames 

piecemeal in two steps. The first distinguishes three basic frame types which are the 

building blocks of other frames. The second step identifies other frames in terms of these 

building blocks. More complex frames should result from different combinations of the 

basic frames. This step utilizes the procedure in (53) in order to capture the smallest 

number of possible frame combinations that could capture the frame properties of the 

largest number of predicates. 

7.3.1.1 Basic Frames 

 Given the two word classes identified in the corpus, i.e., nominal and predicative, 

three basic frames can be distinguished: nominal frames (i.e., frames that begin with a 

nominal expression, NE), predicative frames (i.e., frames that begin with a predicative 
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expression, PE), and zero frame (i.e., when a predicate occurs utterance-finally).34 These 

basic frames provide the building blocks from which other frames are constructed. 

That is, if a predicate PEi is immediately followed by another predicate PEj, the 

first predicate is said to select a predicative frame. If PEi is immediately followed by a 

nominal expression, PEi is said to select a nominal frame. If PEi occurs utterance-finally, 

it is said to select a zero frame. This means that for every predicate PEi, there are three 

possible frame types it can select from. For example, a predicate such as want can select 

nominal, predicative, and zero frames: PE[want] NE[ mommy], PE[want] PE[to], and 

PE[want] #, respectively.  

Predicates are expected to be different vis-à-vis the number of basic frames they 

select. For example, some predicates tend to select the three types (e.g., want), some 

prefer only nominal frames (e.g., answer), some favor both predicative and zero frames 

(e.g., go), others can occur with both nominal and predicative frames (e.g. to), and so on 

and so forth.  

It is also expected that predicates should show different degrees of frame 

selection. For example, want selects a predicative frame more frequently than a nominal 

or a zero frame, whereas build shows the opposite preference and selects a nominal frame 

more frequently than a predicative or a zero frame.  

To give concrete examples of the frame information that can be garnered using 

this simple strategy, Table 31 shows the frame preferences of 100 of the possible 1062 

                                                   
34 These terms are used throughout this chapter in order to avoid any terminological confusion that could 
result from using the traditional terms. All terms will be used as defined. NE and PE refer to the binary 
classes that were identified by the categorization algorithm in the previous chapter. Remember that nominal 
expressions include all the elements that belong to Cat1,3 (prenominal expressions), while predicative 
expressions contain all the elements that belong to the other class (verbs, prepositions, particles, etc…).  
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predicates identified by the categorization algorithm. The ratios in Table 31 represent 

frame preference in terms of relative frequency. Relative frequency is computed by 

dividing the number of times a predicate selects a basic frame, by the absolute frequency 

of the corresponding predicate. These ratios were computed using only tagged words, i.e., 

if a predicate was followed by an untagged word, this co-occurrence was not added to 

any of these frames. That is why some of these ratios do not add up to 1. 

Though still very rudimentary, the ratios in Table 31 show some interesting 

regularities as well as irregularities. The most significant observation in this context is 

that these ratios clearly capture the transitivity distinction among predicates. Transitivity 

here is defined as the tendency of the predicate to select nominal frames as defined 

above. Thus, these ratios demonstrate that predicates such as drink, answer, change, 

gave, fix, draw, asked, believe, bring, cut, build, and found are predominantly transitive. 

On the other hand, predicates such fall, gonna, come, came, belong, go, goes, live, look, 

run, seem, stay, try,  and went, are predominantly intransitive.  

However, these ratios are not able to capture the fine-grained idiosyncratic 

properties of some predicates. To illustrate this, I consider in more detail the cases of the 

predicates buy, change, and in.  

In the case of buy, the ratios give the impression that this predicate does not occur 

transitively, though the corpus used provides information that can be used to establish the 

transitivity of this predicate. The source of this shortcoming was that the context that 

should have provided this information was not tagged by the categorization algorithm. 
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Predicate __PE __NE __Zero  Predicate __PE 
 

__NE 
 

__Zero 
 

answer  0.88   know 0.25 0.04 0.23 
ask 0.08 0.22   leave 0.02 0.63 0.01 
asked  0.67   left 0.14 0.47 0.16 
ate  0.33 0.17  like 0.2 0.28 0.03 
believe  0.67   live 0.67 0.03 0.17 
belong 0.69 0 0.31  look 0.76 0.03 0.05 
break  0.5 0.23  make 0.03 0.7 0.03 
bring 0.03 0.65 0.01  need 0.17 0.31 0.07 
build 0.02 0.6 0.09  open 0.05 0.52 0.19 
buy 0.16 0 0.26  play 0.66 0.19 0.05 
came 0.85 0 0.1  pull 0.01 0.65 0.04 
carry 0.52 0.04   push 0.01 0.74 0.04 
catch  0.39 0.36  put 0.04 0.6  
change  0.86   read 0.04 0.58 0.04 
come 0.85 0.01 0.08  remember 0.26 0.16 0.17 
cry 0.32 0 0.63  ride 0.28 0.5  
cut 0.03 0.63 0.16  run 0.78 0.09 0.09 
draw 0.05 0.73 0.11  said 0.2 0.16 0.31 
drink  1   saw 0.08 0.5 0.17 
drive 0.15 0.52 0.21  say 0.16 0.13 0.33 
dropped 0.1 0.5   screw  1  
dump  0.2   see 0.14 0.3 0.21 
eat 0.14 0.3 0.13  seem 0.82 0.09  
fall 0.85 0.02 0.11  show 0.04 0.36 0.02 
feel 0.32 0.47 0.05  sing 0.08 0.25 0.48 
fell 0.92 0.03 0.04  sit 0.83 0.01 0.13 
find 0.06 0.56 0.04  sleep 0.41  0.55 
finish 0.13 0.24 0.18  squeeze 0.05 0.6 0.05 
fix 0.02 0.78 0.02  stand 0.85 0.07 0.01 
for 0.05 0.44 0.11  start 0.5 0.27 0.13 
found 0.02 0.57 0.07  stay 0.81  0.1 
gave  0.79   take 0.06 0.58  
get 0.3 0.39 0.03  tell 0.02 0.2 0.02 
gets 0.71 0.21   think 0.33 0.21 0.06 
give 0.04 0.51   thought 0.06 0.54 0.07 
go 0.67 0.03 0.18  throw 0.02 0.63 0.07 
goes 0.63 0.14 0.13  to 0.69 0.13 0.02 
going 0.66 0.04 0.23  took 0.04 0.68 0.02 
gonna 0.9 0.02   touch  0.59  
got 0.21 0.39 0.05  try 0.43 0.3 0.14 
guess 0.22 0.17 0.18  turn 0.18 0.71 0.05 
had 0.24 0.37 0.08  turned 0.32 0.61  
has 0.21 0.57 0.03  unscrew  0.91  
have 0.34 0.32 0.05  use 0.04 0.49 0.03 
hear 0.04 0.36 0.07  used 0.67  0.04 
help 0.05 0.26 0.31  wait 0.36 0.31 0.08 
hit 0.11 0.4 0.07  want 0.16 0.1 0.02 
hold 0.13 0.56   wanted 0.63 0.13 0.08 
in 0.21 0.50 0.06  watch 0.15 0.42 0.08 
keep 0.35 0.4 0.02  went 0.86 0.03 0.01 

 

Table 31: Relative Frequencies of Basic Frames 
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As for the predicate change, the ratios do not capture the fact that this predicate 

can also be intransitive. However, by checking the corpus used, there was no single 

context where this predicate occurred intransitively. Though this conclusion touches upon 

the issue of data sparseness in corpus-based approaches, the significance of this 

conclusion in this context is that it does not illustrate a weakness either in the 

categorization algorithm or the algorithm proposed so far for identifying basic frames. 

Given the humble size of the corpus used, using a larger corpus is expected to improve 

the results. 

 As for the predicate in, the irregularities were the direct result of errors in 

categorization. These ratios reflect that this predicate can select a predicative frame in 

0.21 of its occurrences. By checking the corpus, it was found that this conclusion is 

erroneous and resulted from falsely categorizing the words here and there as possible 

predicates.  

 Despite these shortcomings, it is important to remember here that these ratios are 

based on the first approximation of the category cues in a humble-size corpus, as was 

discussed in the previous chapter. Though the results so far are not insignificant, they can 

be easily improved using a larger corpus and a higher approximation of cues. These ratios 

were meant to illustrate the frame regularities that could be trivially captured by directly 

using the information yielded by the categorization algorithm. Below, I will show how 

these basic frames can be exploited in grasping more fine-grained frames, using MI as a 

measure of association. 

 

 



 166 

7.3.1.2 Complex Frames 

 The main idea behind identifying complex frames is that a complex frame should 

result from the concatenation of two or more basic frames. That is, given the basic frames 

NE and PE, a complex frame can be any member in the set { (NE PE), (NE NE), (PE PE), 

(PE NE NE), (NE PE NE), etc…} . Figure 9 visualizes this concatenation process, where 

the utterance boundary sign, #, indicates the end-point of a frame. 

Predicate 
 
 

PE  NE  # 
 
 

PE NE # PE NE #  
. .  . . 
. .  . . 
# #  # # 

Figure 9: Concatenation of basic frames 

 

For example, a predicate such as want would select combinations such as (PE PE), (PE 

PE PE), and (NE PE PE), as exemplified by the structures (PE[to] PE[go]), (PE[to] 

PE[scare] NE[mommy]), and (NE[mommy] PE[to] PE[stand]), respectively. 

In principle, this strategy would definitely result in a large set of possible frames, 

and would also fail to capture the relationship between predicates that have similar frame 

preferences. I will introduce below a formal criterion to limit the set of possible frames to 

those permitted in a given language, as supported by evidence from the regularities in the 

corpus. 

7.3.1.3 Frame Cues 

 Possible frames in a given language can be identified using a subset of the 

possible combinations of basic frames as discussed above. What is needed then is a 
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subset of these combinations that approximates the frame behavior of the predicates in 

any given corpus. This subset will be referred to as “Frame Cues” , Kf, henceforth, and is 

defined as follows: 

(100) Frame Cues (Kf) (2) 
 Frame Cues, Kf, are the members of the smallest subset of the possible 

combinations of basic frames (f1,…,fm) such that every predicate in the 
corpus occurs at least once with at least one member in Kf. 

 

Similar to category cue extraction, this subset Kf can be identified using two different 

methods. The only difference here is that the search space for possible frames is limited 

to the right context as biased by the head direction in English that was established 

previously by the head-direction algorithm. 

The first method is to extract for every predicate, PEi, in a corpus, R, the set of 

basic-frame combinations, fi, that PEi selects. Kf for corpus R, f
RK , is then the 

intersection set of all the sets { f1,…fM} , where M is the number of predicates in the corpus 

that were identified by the categorization algorithm. This method is formalized as 

follows: 

(101)  Let R be a corpus with M predicates { PE1,…PEM} ,  

Let { f1,…fM}  be the set of basic-frame combinations, { PE1,…PEM}  select, 

respectively,  

then f
RK  ≡  { f1 

�
 f2 

�
 f3 

�
…

�
 fM}  

 

As mentioned before finding such minimal subsets is known to be intractable. 

Accordingly, what is introduced here is an approximation of this subset. 

The method proposed here makes a direct use of the highly frequent frame 

combinations in order to approximate Kf. We start with building a decreasing frequency 

profile for all the possible frame combinations { f1,…fM} , in a corpus, R. We then add up 
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the number of predicates, X1, that select the first most frequent combination, f1, and the 

number of predicates, X2, that select the first most frequent combination, f2, and so on. Kf 

for corpus R, f
RK , is then the set of frame combinations { f1,…fx} , such that:  

(102)  a. }{},...,{ 1 Mx fff ⊂  

      b. MXK
x

i
i

f
R α≅≡�

=1

 

where � can be any positive number, and M is the number of predicates identified in the 

corpus. In words, f
RK  is established as the smallest subset of basic-frame combinations in 

the corpus selected by a number of predicates that converges to an order, �, of M (i.e. 1M, 

2M, etc…). Similar to Category Cues, closer approximations of f
RK  can be obtained by 

increasing the value of �. Only the first approximation, i.e., � = 1, is implemented in the 

present algorithm. It is shown below that the algorithm performs well with this 

approximation. The efficiency of higher approximations is left for future investigation. 

Once frame cues are identified, the pieces making up these frames are compressed 

into one entity with no internal structure. That is, if a frame contains the pieces X and Y, 

these two pieces are treated as one piece, X_Y. All the calculations below are performed 

accordingly. 

7.3.1.4 MI-based Frame Identification 

Once Kf is identified, we can compute the probability that a given predicate 

selects any of the frames in Kf in the following manner. 

Let the frame cues for corpus R be f
RK  � { f1,…,fx} , where x is the number of 

frame combinations in f
RK . For every predicate PEi in R, we first extract the frame 
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combinations it selects. This means that the maximum number of frames for a predicate 

PEi is x, and the minimum is 1. This is visualized in Figure 10. 

 

 

 

PEi 

 

f1 

f2 

f3 

. 

. 

fx-1 

fx 

 
Figure 10: Representation of Frame Distribution Contexts 

 

The probability that a certain predicate selects a given frame is established in terms of MI 

in the following fashion. We first compute the MI between the predicate and every frame 

it occurs in, using the same MI formula, repeated in (103).  

(103) 
)()(

),(
log);( 2 yPxP

yxP
yxI =  

This formula is used in this context in the following manner. Given a predicate PE and a 

frame f, the probabilities in (103) are computed as follows: 

(104) a. 
T

fPEfrequency
fPEP

),(
),( =  

b. 
T

PEfrequency
PEP

)(
)( =  

c.  
T

ffrequency
fP

)(
)( =  

where T is the number of tagged words in the corpus.  
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The decision that a given predicate selects one or more frames is probabilistic. 

The frame probabilities of a particular predicate are computed in terms of the positive 

mutual information between the predicate and the frames it selects, in the following 

manner. Given a predicate PE which co-occurs with the frames [f1, f2,…,fx], the 

probability that PE selects any of these frames, fi, is computed by dividing the mutual 

information between PE and fi by the sum of the mutual information between PE and all 

the frames it selects (105). 

(105) 

�
=

≈
x

i
i

i
is

fPEI

fPEI
fPEP

1

);(

);(
),(  

If the mutual information between the predicate and any frame is negative or less than 

zero, this is an indication that this predicate does not select this frame, and this mutual 

information is excluded from the formula in (105). 

7.3.2 Experiment 

7.3.2.1 Corpus Description 

The frame identification algorithm described in the previous section was tested on 

English using the same Peter corpus used in the two previous experiments. Unlike other 

experiments, this algorithm operates on a binary-tagged corpus output by the 

categorization algorithm. That is, this corpus contains words that are tagged as predicate 

expressions (PE), and nominal expressions (NE). 

7.3.2.2 Results 

The algorithm was applied in three phases. The first phase built a decreasing 

frequency profile for all the possible frame combinations in the binary-tagged corpus. 

The second phase established the frame-cues subset, Kf. In the third phase, Kf was used to 
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establish the frames a predicate selects, and to then assign probabilities to these 

selections, according to (105). 

7.3.2.2.1 Frame Cues 

 The first phase of the algorithm yielded �  200 possible frame combinations. Table 

32 shows the ten most frequent frame combinations and their frequencies in the profile. 

The frequencies in Table 32 indicate the number of predicate tokens that occur in the 

corresponding frame. (To understand what these combinations, the reader could interpret 

PE as a verb, a preposition, a particle, or a predicative adjective, and NE simply as a noun 

phrase, NP.) In the second phase, the algorithm converged to the first order of M, i.e., the 

number of tagged predicates in the corpus, after the 8th frame combination, i.e., NE NE.   

 Frame 
 

Frequency 
 1 PE 941 

2 PE NE 811 
3 NE PE 691 
4 PE PE 682 
5 NE PE NE 471 
6 Zero 402 
7 NE 366 
8 NE NE  144 
9 PE PE NE PE 110 
10 NE PE NE PE 99 

 

Table 32: The 10 most frequent frame combinations in the corpus 

 

Table 33 shows the frame-cues subset, Kf
 for the corpus, and some examples of the 

predicates in each frame. The distribution of verbs among these frames shows some 

frame regularities that deserve some comments.  
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 Frame 
 

Examples 

1 Zero 
 
 
 

afraid apart ate awake bend bet blow breathe come dance disappear 
drinking fell finished flying go grow guess hurt jump left live look play 
reading resting etc… 

2 PE  
 
 
 

are back be came can could do don’ t drive fall fell flying get go goes 
gonna keep look should sit stand stay to turn wake was watch went won’ t 
etc… 
 

3 PE PE 
 
  

go going gonna got have like must need ready supposed to trying want 
wanted wants won’ t etc… 
 

4 NE 
  
 
 

about answer bless bring build carry catch close do draw drink eat feel 
find fix found get hear help hit leave like make need open play pull read 
riding saw etc… 
 

5 PE NE  
 
 
 

afraid are bang be belong bite blow broke came can come could fell f inish 
get go gonna jump listening look looking move play put ran rode see sit 
speak stand etc… 
 

6 NE PE NE 
 
 

ask bring build drive find fix get give leave mail make put throw write 
wrote etc… 
 

7 NE PE 
 
  

believe blow bring broke can carry cut did do does drive fix fold get guess 
hold leave lift like make pick pull push put etc… 
 

8 NE NE 
 
  

ask bring brought call called gave give made make read sing taught write 
etc… 
 

 Total 4508 
 

Table 33: Examples of Predicates in different frames 

The first frame encompasses predicative adjectives (e.g., afraid and awake), verbs 

that do not require complements at all (e.g., breathe, come, disappear, fell, go, etc…), 

and verbs that can occur with or without surface complements (e.g., ate, drinking, 

reading, etc…)35. On the other hand, the second frame, PE, where a predicate selects 

another predicate as its complement, includes mainly auxiliary verbs as well as phrasal 

verbs. The third frame, also contains auxiliary verbs, in addition to verbs that usually 

                                                   
35 These are verbs that allow what is traditionally referred to as NP-Drop. 
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select infinitival complements (e.g., like, need, trying, want, etc…). The fourth frame is 

predominantly selected by predicates (prepositions and verbs) that are primarily 

transitive. The fi fth frame is mainly preferred by predicates that tend to select 

prepositional phrases as complements, in addition to some phrasal verbs. The sixth frame 

is obviously selected by verbs that require the traditional NP PP complement. The 

predicates in the seventh frame do not show an overall frame regularity, yet some sub-

regularity can be distinguished. This frame contains verbs that could select a tensed 

clause as a complement (e.g., believe and guess), and transitive phrasal verbs (e.g., bring, 

carry, get, lift, make, pick, pull, push, and put). The eighth frame noticeably contains 

ditransitive verbs. 

7.3.2.2.2 MI-Based Frame Preference  

 Though these results capture significant frame properties of a considerable portion 

of the predicates identified, they do not provide accurate conclusions regarding the 

complement-adjunct distinction by simply using the mere co-occurrence of a predicate 

with a given frame as a measure of selection. Therefore, the mutual information between 

the predicate and the frames it co-occurs with was used to obtain more solid conclusions 

about frame preferences. The mutual information was computed according to the 

formulas in (103) and (104) above. Table 34 illustrates the frame preference of some 

predicates as measured in MI terms. In Table 34, ‘_’ indicates the position of the 

corresponding predicate. For example, the predicate answer selects a nominal expression, 

NE, and their mutual information is 6.32, and so on. The negative mutual information is 

given in this table to demonstrate the point that though some predicates co-occur with 
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certain frames in the corpus, this co-occurrence could be the result of a chance factor and 

consequently does not provide enough evidence for selection.  

Predicate _ PE _ PE NE _ NE PE _ PE PE _ NE PE NE _ Zero _ NE _ NE NE 

answer 0 0 0 0 0 0 6.32 0 
ask 0 0 2.57 0 0 0 1.12 4.57 
belong 3.27 4.57 0 0.19 0 1.59 0 0 
bring 0 2.63 3.5 0 2.37 -4 4.13 3.87 
build 0 2.8 0.8 0 3.54 -0.12 4.71 0 
carry 0 3.31 3.63 0 0 0 4.3 0 
catch 0 0 0 0 0 1.82 5.03 0 
come 3.14 2.88 0 3.6 0 -0.29 -0.54 0 
draw 0.32 0 0.04 0 0 0.15 5.98 0 
drink 0 0 0 0 0 0 6.25 0 
dump 0 0 0 4.39 0 0 5.41 0 
eat 0.68 2.63 0.13 0 2.57 0.32 4.16 0 
fall 3.89 0 0 3.65 0 0.1 -1.18 0 
feel 2.25 0 3.57 3.65 3.53 -0.96 5.07 0 
find 0.71 3.1 3.1 0 3.55 -1.47 5.11 3.43 
finish 2.08 1.54 0 0 0 0.85 4.07 0 
fix 0 0 1.82 0 3.37 -2.72 5.61 0 
get 2.39 3.1 3.2 3.11 2.69 -1.84 4.04 0.98 
give 1.1 0 2.61 0 3 0 0.22 5.48 
go 2.71 4.07 0 3.33 1.59 0.81 -0.17 0 
guess 2.23 2.89 3.18 2.4 3.07 0.83 0.47 0 
hear 0 2.98 3.28 0 0 -0.52 4.07 0 
hold 1.72 0 3.61 0 2.78 0 4.79 0 
keep 2.36 2.72 3.22 2.75 3.49 -2.13 2.9 0 
know 1.1 1.62 0 0 1.89 1.16 -0.55 0 
leave 0.52 0 4.26 0 2.72 -3.8 1.97 0 
like 0.63 1.39 2.18 2.93 2.89 -1.92 3.92 0.97 
look 1.74 3.99 0 2.58 1.95 -0.97 -0.63 0 
need 1.43 1.95 2.95 1.42 2.45 -0.49 3.89 0 
put 0.16 1.91 3.86 0.93 3.56 -5.51 0.8 0 
seem 0 0 0 3.58 0 0 0 0 
think 2.1 3.17 2.68 2.77 2.2 -0.69 -3.24 0 
try 1.9 0 3.92 2.68 0 0.48 3.61 0 
turn 1.98 3.11 4.53 0 2.22 -0.96 3.12 2.65 
want 0.95 1.07 1.94 1.82 2.6 -2.26 1.66 -3.34 

 
Table 34: Some verbs and their frame MI 
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The results in Table 34 are self-evident. However, to realize the efficiency of 

mutual information as a measure of frame preference, I discuss in some detail the frame 

preferences of some representative verbs from Table 34.  

For example, verbs such as answer and drink can be safely established as almost 

equally mono-transitive. They have almost the same mutual information with NE, and 

show no preference for other frames, as clear from the zero mutual information. This 

preference was captured by the subcategorization algorithm as a direct result of the fact 

that these two verbs occurred 8 and 7 times, respectively, in the corpus, and were 

followed by a nominal expression in all their occurrences.  

Verbs such as ask and give show a preference for the NE NE frame as reflected in 

the high mutual information between these two verbs and this frame, i.e., 4.57 and 5.48, 

respectively. Though such a preference is expected, it illustrates an important attribute of 

mutual information as a measure of association, i.e., assigning high values to rare events. 

This can be clarified by considering the distribution of these two verbs in the corpus. The 

first verb, ask, occurred 49 times in the corpus. In only 15 contexts, this verb was 

followed by a tagged word: 11 nominal, and 4 predicative. Out of these 11 nominal 

contexts, it occurred only once with the NE NE frame, which yielded the high mutual 

information in Table 34. On the other hand, give occurred 183 times in the corpus. In 

only 100 contexts, this verb was followed by a tagged word: 93 nominal, and 7 

predicative. Out of the 93 nominal contexts, give occurred only 7 times with the NE NE 

frame, which resulted in the high mutual information in Table 34.  

This attribute of the mutual information statistic could be tolerated if we take into 

consideration the fact that these results are based on a humble-size corpus, and on first-
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order approximations of both categories and frames. Using a larger corpus and closer 

approximations should establish more solid results. 

Below, the last phase in the subcategorization algorithm shows how the mutual 

information in Table 34 can be used in deriving frame probabilities that better represent 

the frame preference of predicates.  

7.3.2.2.3 Frame Probabilities  

 Frame probabilities were computed according to the formula introduced earlier in 

(105), repeated below for ease of reference. 
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According to (105), the probability that a predicate selects a certain frame is computed 

from positive mutual information only, by dividing the mutual information between the 

predicate and the frame by the sum of the mutual information between this predicate and 

all the frames it selects. Excluding negative and zero mutual information from probability 

calculation resulted in frame probabilities that would reduce the frame noise for some 

predicates. This produced a clearer picture of the frame preferences of predicates as 

illustrated by the frame probability distribution of some predicates/verbs in Table 35. 

These probability distributions reflect some properties of the frame behavior of these 

verbs. The first is that these probabilities reflect the fact that some verbs show a clear bias 

towards some frames. This is clear from the probability distributions for verbs such as 

answer, ask, belong, carry, catch, come, draw, dump, fall, finish, fix, give, hear, leave 

and seem, where the probabilities are concentrated in a relatively small number of frames, 

with one or two frames carrying probabilities obviously higher than other frames.  
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Predicate _ PE _ PE NE _ NE PE _ PE PE _ NE PE NE _ Zero _ NE _ NE NE 

answer       1  

ask   0.31    0.14 0.55 

belong 0.34 0.48  0.02  0.17   

bring  0.16 0.21  0.14  0.25 0.23 

build  0.24 0.07  0.3  0.4  

carry  0.29 0.32    0.38  

catch      0.27 0.73  

come 0.33 0.3  0.37     

draw 0.05  0.01   0.02 0.92  

drink       1  

dump    0.45   0.55  

eat 0.06 0.25 0.01  0.24 0.03 0.4  

fall 0.51   0.48  0.01   

feel 0.12  0.2 0.2 0.2  0.28  

find 0.04 0.16 0.16  0.19  0.27 0.18 

finish 0.24 0.18    0.1 0.48  

fix   0.17  0.31  0.52  

get 0.12 0.16 0.16 0.16 0.14  0.21 0.05 

give 0.09  0.21  0.24  0.02 0.44 

go 0.22 0.33  0.27 0.13 0.06   

guess 0.15 0.19 0.21 0.16 0.2 0.06 0.03  

hear  0.29 0.32    0.39  

hold 0.13  0.28  0.22  0.37  

keep 0.14 0.16 0.18 0.16 0.2  0.17  

know 0.19 0.28   0.33 0.2   

leave 0.05  0.45  0.29  0.21  

like 0.04 0.09 0.15 0.2 0.19  0.26 0.07 

look 0.17 0.39  0.25 0.19    

need 0.1 0.14 0.21 0.1 0.17  0.28  

put 0.01 0.17 0.34 0.08 0.32  0.07  

seem    1     

think 0.16 0.25 0.21 0.21 0.17    

try 0.15  0.31 0.21  0.04 0.29  

turn 0.11 0.18 0.26  0.13  0.18 0.15 

want 0.09 0.11 0.19 0.18 0.26  0.17  

 
Table 35: Some verbs and their frame probabilities 
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The other observation is that some verbs show ‘ frame dispersion’ , where probabilities are 

closely dispersed among a relatively large number of frames. The verbs get and guess are 

good examples of these verbs. 

 The performance of the learner in these representative cases is suggestive of its 

overall performance in frame learning in general. However, the overall performance of 

this learner was difficult to evaluate given the fact that the tagged version of the corpus 

used did not contain frame information. Future investigation is still needed to measure the 

performance of this learner in frame learning. 

7.4 Discussion and Conclusions 

This chapter presented the specifics of a distributionally-bootstrapped cue-based 

learner (CBL-2). CBL-2 comprised three main algorithms. The first presented a simple 

cue-based method for predicting the head direction given a small size corpus. The logic 

behind starting with this algorithm was that important structural properties of language 

should follow naturally from information about head direction.  

The second algorithm presented another cue-based method for the identification 

of predicates and arguments. This method was mainly based on a procedure for learning a 

set of cues from the corpus. This set was then used to capture the distributional similarity 

of other words in the corpus. Similarity was based on the strength of the association 

between a given word and the members of the cue set. Using mutual information to 

establish degrees of association, this algorithm was able to differentiate the words in the 

corpus into two main classes, i.e., predicates and arguments. Equipped with the 

information provided by the first two algorithms, the last algorithm exploited this 

knowledge to determine the most probabilistic syntactic frames that best describe the 
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lexical syntactic properties of the predicates identified. Together, these three algorithms 

presented a generalized, cue-based, and language-independent system for grammar 

induction, in general, and frame identification, in particular. 

Unlike CBL-1, the performance of CBL-2 in frame learning could not be 

evaluated as a function of its performance in head-parameter setting and binary 

categorization. However, CBL-2 performance in the previous tasks may give an idea of 

how well this learner is able to handle frames. This said, though both learners achieved 

almost the same level of performance in the categorization task, CBL-2 presented a more 

sophisticated implementation of the cue-based model laid out in Chapter 5, that was able 

to circumvent the weaknesses of CBL-1.  

Firstly, CBL-2 learned the cues from the corpus, unlike CBL-1, which was given 

the semantic cues as its initial free knowledge. Secondly, CBL-2 contained a head-

direction setting algorithm that justified searching for complements in the predicate’s 

right-side context. CBL-1, on the other hand, arbitrarily looked for complements in this 

context. Finally, CBL-2 was more efficient in capturing the gradient nature of some 

linguistic knowledge. For example, it was able to assign words to their possible 

categories in terms of the probability distributions of words over these categories. 

Likewise, it was able to capture the frame preference of predicates in similar probabilistic 

terms. 

These properties of the distributionally-bootstrapped cue-based learner (CBL-2) 

give it some descriptive edge as a preferable direction for future work on cue-based 

learning in general, since it offers a mechanism for learning much, given little. 
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Chapter 8 
 

General Discussion and Conclusions 

This dissertation had two objectives. The first immediate objective was to present a cue-

based distributional approach to frame identification. The other more general objective 

was to show the central role of the input in human and automatic language acquisition.  

The basic idea behind this approach is that there is a subset of words, i.e. cues, in 

the input that can be used in bootstrapping significant parts of the grammar of the input 

language. This subset was formally defined as the smallest subset of words in the input 

that carry significant information about the distributional properties of other words in the 

input. It was shown that an approximation of these cues could be distributionally 

extracted from the corpus.  

Building on this basic idea, this dissertation introduced the foundations of a cue-

based distributional learning model. These foundations comprised three central 

procedures for learning cues from the input, establishing distributional similarity in terms 

of these cues, and identifying frames using the information yielded by the previous 

procedures. 

Two proof-of-concept implementations were presented to test the plausibility of 

this model. The first implementation was a semantically-bootstrapped cue-based learner 

(CBL-1) and was based on a set of semantic cues in the input. The other implementation 

was a distributionally-bootstrapped cue-based learner (CBL-2) and was built on top of a 

set cues that were automatically learned from a corpus.  
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Because of the fact that no machine learner has access to objects in the world, 

CBL-1 was seeded with names of things and people and a small subset of pronouns in the 

corpus. Using these bootstraps, CBL-1 was able to categorize a considerable subset of 

words in the input into verbs, nouns, and determiners. CBL-1 then used these categories 

in learning phrase structure rules and 38 possible subcategorization frames. This learner 

was able to identify this information with an average type and token precision of 97% 

and 98.5%, respectively. 

In spite of this promising level of performance, this learner suffered from three 

main weaknesses. The first was its inability to learn semantic cues from the input for the 

reason mentioned above. The second and more serious problem was its inability to 

capture lexical ambiguity, where a word could be assigned to more than one part of 

speech. The third drawback was that this learner was unjustifiably biased toward 

searching for a verb’s complements in its right-side contexts. 

The other learner, CBL-2, circumvented these problems by learning cues and 

head direction based on distributional regularity in the input. Using this information, this 

learner was able to (i) differentiate words in the input into two main classes, i.e., 

predicative and nominal, and (ii) to identify 8 subcategorization frames. This learner 

achieved an average type and token precision in these tasks of 98% and 97%, 

respectively. Though this average is almost the same as that of CBL-1, CBL-2 has an 

edge of capturing this information in more probabilistic terms than CBL-1. This way 

CBL-2 was able to account for lexical ambiguity in addition to degrees of frame 

preference of different predicates. 
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The overall performance of these two cue-based distributional learners raises 

some practical as well as theoretical issues in language acquisition. 

 Previous approaches to automatic lexical knowledge acquisition assumed part-of-

speech tags, partial parses, or a predefined set of cues as their initial knowledge. The two 

cue-based learners presented here showed that categorization and subcategorization 

knowledge can be bootstrapped from an untagged corpus, using minimal or even no a 

priori linguistic knowledge. It was shown that bootstrapping this knowledge was possible 

given a set of cues that could be identified automatically in any given corpus.  

 Moreover, previous methods for automatic subcategorization frame acquisition 

also assumed a predefined set of possible frames. The work presented in this dissertation 

demonstrated that this is not necessary since an approximation of the set of possible 

frames in a language could be learned distributionally from corpora. 

 The practical significance of this cue-based approach to knowledge acquisition 

stems from (i) the evidence it gives to the efficiency of cue-based learning in 

bootstrapping lexical knowledge from minimal initial knowledge, and from (ii) the 

formal procedures it introduced for identifying and learning cues and frames from 

untagged corpora.  

The theoretical significance of the work presented in this dissertation resides in 

the support it gives to the central role of the input in learning and, consequently, to the 

empirical approaches to language acquisition. It was shown that the input is seeded with a 

rich set of distributional cues that are accessible to the learner, and that these cues could 

be easily extracted from a small-size corpus, using simple distributional learning 

mechanisms. It was also demonstrated that these cues provide the learner with 
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scaffoldings that can be exploited in bootstrapping into the target language. For example, 

it was shown that the head parameter could be set distributionally on the basis of 

distributional regularities in a small-size corpus. The efficiency and language-

independent nature of the head-parameter setting of the model was partially demonstrated 

using three different languages: English, Japanese, and German.  

The evidence provided by this cue-based model is not meant to deny or assert the 

existence or centrality of innate knowledge in acquisition, it rather stresses the central 

role of the input and distributional methods in learning. The ability of the model to 

accurately capture this parametric variation illustrates its potentiality as a useful and 

objective tool for the study of (automatic) lexical acquisition, in particular, and grammar 

construction, in general, in less examined languages.  

The model introduced in this dissertation is a pointer to a possible direction of 

cue-based distributional learning that is worth considering. Future research is still 

required to investigate the feasibility of this model in learning other aspects of linguistic 

knowledge such as word segmentation and morphology. Future investigation is also 

needed to test the efficiency of this model with different languages, particularly those 

with rich morphological systems. The model is falsifiable, which facilitates the process of 

testing its feasibility in these tasks as well as revising it in order to increase its efficiency. 
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Appendices 
 
Appendix A: Words Identified as Potential Nouns by CBL-1 

abcs accident address air airplane airport alphabet ambulance animal animals anteater appetite 
apple apron ark arm arms arrow ay baby back bacon bag bags ball balloon balloons balls banana 
bandage bandaid barn barrel barrels barrette baseball basket basketball bat bath bathroom bathtub 
battery beach beagle bear beard beaver bed bedroom beds beginning bell belt bench bendables 
bicycle biggest bike bird bit bite blackboard blanket block blocks blue board boat boats body 
bologna bolt bolts book bookcase books boots both bottle bottom bounce bowl box boxes boy 
boys bracelet breadstick bridge briefcase brother bud buildings bull bulldozer bunny bus button 
buttons cake calf camera can candy car card carpet carriage cars case castle cat cats ceiling cereal 
chain chair chairs change checkbook cheek chicken chickens children chimney chin chip church 
circle circus class clean closet clown coat coats cold collector colt comb cookie corner couch 
counter country cover cow cowboy cows crack cradle crash crayon crayons crown crumbs 
crumpled cube cup cushion daddy dark day days deal desk detour diaper diapers difference dinner 
disaster doctor dog doggie doll dolphin donkey door doorbell downstairs drawer dress dresser 
drill drum drums dry dryer duck duckie dumping ear ears effort egg eight elbow elbows elephant 
elevator end engine envelope explosion eye eyebrow eyes face faces fan farmer farmhouse father 
favorite feeling feet fence ferry few field finger fingernail fingers fire firehouse fireman fireplace 
fish fisherman flag flood floor flower flowers fly food foot football foremans fork frescade friend 
friends Frisbee frog front fuel furniture game garage gas giraffe girl girls glass glasses gloves 
godfather going gonna goodness gorilla gosh grandma grass grasshopper green ground guest 
guitar gum guy hair hall hallway hamburger hammer hand handle hands hard harmonica hat head 
headlights hear hearing heat heater help hiccups hippopotamus hole holes home hood hook horn 
horse horses horsie horsies hose hospital hour house houses hug humidifier hurry hurt husband 
iceberg idea in ink inside itch jack jacket jersey juice key keys kid kind king kiss kitchen kite 
kittens Kleenex knife label labels ladder lady lamb lambs lamp laundry least leaves leg legs let 
letter letters lid lifesaver light lights line lion little look lot luggage lunch machine magazine mail 
mailbox mailman mama man map mark mask matter meal men mess message microphone 
microscope middle milk mind minute mirror mistake mittens moment mommy money monkey 
monster morning most mother motor motorcycle mountain mouse mouth mover music mustache 
nails name nap napkin neck necklace newspaper nice night noise nose number numbers ocean 
office on one ones opening operator orange organizer other others outside ow owl own pad page 
pages pants paper papers parade pardon park party past pedals pegs pen pencil pencils penis 
penny pens people peoples person pheasant phone piano picnic picture pictures piece pieces pill  
pillow pinkie pipe place plate playground playhouse playing pliers plug pocket pocketbook 
pocketbooks point pole policeman pool position pot potty pouch present presents pretzel pretzels 
problem propeller protest puppet puppets puppy push put puzzle quadracycle question race 
radiator raft railroad rain raincoat record recorder rectangle red reel reels refrigerator reindeer rest 
restaurant rhino rhinoceros ride right ring rings road rodeo rollerskate roof room rooms rosie rosy 
row rug ruler saddle sailboat same sand sandwich saw saxophone scale scarf school scissors 
scoop scooter scream screen screw screwdriver screws search seat second secret see seesaw seven 
shades sheep shell ship shirt shoe shoes shore shorts shoulder shower side sides sidewalk sink 
siren sister sitting size skates sky sled sleigh slide slipper slippers smoke snack snap sneaker 
sneakers sneeze snorkel sock socks sofa soldier somersault song soup space spanking special 
spoon spoons spot spray square squeaker squirrel stamp stand star station step steps stick stomach 
stool stoplight store story stove strange street string stroller stuff subway suit suitcase suitcases 
summer sun suntan surprise sweetie swim swing sword table tables tabs tag tail taillights tape 
taperecorder tapes taxi teeth telephone telescope television tent test thing thingamajig things 
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throat thumb ticket ticketman ticktock tiger time tire tires tissue toast toe toes toll tongue tool 
tools toothbrush top towel tower towers toy toys track tracks tractor trailer train trains trash tray 
tree trees triangle trick tricycle trip truck trumpet trunk try tube tunnel turkey turn turtle tv uh um 
umbrella uncle under underpants vacation valentine vehicle violin wagon walk walkietalkie wall 
wallet walls want wash watch water watermelon waves way weasel weekend weenie what wheel 
wheels where while whistle who window windows windshield wire wolf woman word work 
world worm wrench wrist wristwatch write writing yawn yours yyy zebra zigzag zoo   

Appendix 2: Words Identified as Potential Verbs by CBL-1 
 
already always am answer are ask be been before beg belongs bend better blow borrow both 
break breathe bring bringing broke brought build buy call calls came can care carry catch caught 
change changed choke choose cleans climb close closing color come complete confine could 
counting cry cut did die diversified do does draw drew drink drive drop dropped dry eat either 
even ever fall feed feel figure fill find finish fit fits fix fold forgot forgotten found gave get give 
go goes going gone got gotten guess had hammer happened hardly has have having hear heard 
help helped hit hold hole hook hurt hurts imagine imitate if is isn’ t juggle jump just keep knock 
knocked know knows lean learn learned leave left let lick lift like likes lining listen lives lock 
look looking lose lost m made mail make making matter mean meant mess might mind miss 
missed misunderstood move must need needs not now on one only open opens pack park pat 
pedal pen pencil pick piece pillow pinch pitch play played point pour poured practice pretend pull 
push pushed pushing put putting ran reach read realize really remember reminded ride riding right 
ring rinse rip roll run runs said saw say says scare screw see seem seen set share shaved should 
show showing sing singing sit sitting sleep slide smash smell smells smiling somebody sound 
speak spend spill spilled spit spoil spread squeak squeeze stacked stand start stay stepped stick 
still stop stuff swim swims take taken takes taking talk talked talking tape taste tear tell thank 
then think though threw throw tickle tinkle to told took tore touch trade traded trading tried try 
turn turned uh understand unscrew use using wait wake walk want wants was wash waste watch 
wear went where will win wind wipe wiping woke won work works worry wrap write writing 
wrote 
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