
1

CroMo - Morphological Analysis for Standard
Croatian and its Synchronic and Diachronic

Dialects and Variants

Damir Ćavar1/2, Ivo-Pavao Jazbec2, and Tomislav Stojanov2

1 University of Zadar
2 Institute of Croatian Language and Linguistics

Abstract. We present the development strategies and results of the
CroMo morphological analyzer for Croatian. It was designed as a mono-
lithic finite state based morphological segmentation and annotation tool,
that emits feature bundles for all recognized morphemes and sub-mor-
phemes, and generates lemmata for the lexical root and complex com-
pounds in one swoop. Its linguistic base uses morphological and mor-
photactic regularities only, and is easily extensible. The development
and potential expansions of the lexical base is and can be done in a
short amount of time, generating platform independent and extremely
efficient code and binaries based exclusively on open source tools. We ap-
proach the (linguistic) interoperability problem utilizing a GOLD-based
(Onltology-oriented) annotation schema for uniquely mappable linguistic
terminology in the annotation output. CroMo was developed to provide
an initial morphological and morpho-syntactic annotation and lemmati-
zation for the Croatian Language Corpus, but can be applied to other
similar languages.

1 Introduction

CroMo is a morphological analyzer that is being developed for automatic corpus
annotation, in first place for the needs of the Croatian Language Corpus (CLC),
but with a much broader scope. One of the goals of the CLC project3 is to provide
large quantities of language data with a multi-level annotation for lexicological,
lexicographical, and linguistic research.

One particular interest of various related research projects that use CLC is
to have access to morphological information, i.e. types of morphemes and allo-
morphs, their features and qualitative and quantitative distributional properties.
The annotation requirements thus include morphological segmentation of each
word in the corpus, and detailed annotation of each single morpheme at one layer.
In addition to that, the ongoing expansion of the corpus with synchronic, and
? The presented work was supported by the Ministry of Science, Education and Sports
of the Republic of Croatia, grant 212-2120920-0930.

3 The CLC is developed at the Institute of Croatian Language and Linguistics. It is
available for online analysis at riznica.ihjj.hr.

in particular diachronic data, motivated by research in the domain of language
change and evolution, and thus the necessity to cope with various morphological
paradigms, morpheme types, and morphotactic regularities that deviate from
the normative standard, requires a technological solution that allows linguists to
expand the morpheme set and morphotactic rules easily, and incorporate this in
the automatic annotator.

Manual annotation at the morphological and morpho-syntactic layer of large
quantities of text is not viable, given common timeframes and limited resources
in research projects. Further, the specific goal of CLC to provide linguistically an-
notated text from a long period of time, and thus synchronic and diachronic infor-
mation about Croatian and its dialects imposes a variety of problems. The vari-
ation and change of morphological regularities and morpho-syntax over longer
timeframes, together with the fact that historically the respective orthographic
standards were changing and even competing, is a challenge for a human anno-
tator, let alone for automatic annotation tools.

A special interest was also to provide an annotation tool that minimizes
the interoperability problem the linguistic community is facing. Besides the fact
that corpora and lexical resources are often proprietary and the access to them
is limited and restricted in various ways, also standards for annotation schema
are manifold, often incompatible and partially inconsistent or linguistically prob-
lematic.

Besides general data format strategies to be based on XML and Unicode
encodings, we propose and incorporate in CroMo also a linguistic annotation
standard that maximizes the compatibility with other annotation schema and
processing tools. It is a fact that many linguistic resources are designed with
specific research goals in mind. In the same way, linguistic annotation tools are
not necessarily designed to be compatible with others, or interoperable in other
research and application scenarios, being based on less standardized linguistic
and technological grounds.

Our general goal is to minimize the future effort for inclusion of resulting
language resources and tools in a larger pool of data and tools. We intend to
maximize the interoperability factor of data and tools by using a tagset or feature
structure for the annotation of morphological segments that has the potential
of being easily mappable or translated into other tagsets. Since we did not find
any other existing annotation schema that satisfies these goals, we decided to
make use of the General Ontology for Linguistic Description (GOLD) [1] as
the exclusive terminological resource of annotation labels that enter the final
description of the morphemes and words.

An additional advantages of using the terminology specified in an ontology
for the annotation is also that post-processing the output can make use of axioms
and concepts specified therein, either for disambiguation, or for further deduction
of properties and structures.

A similar automatic morphological analyzer for Croatian, and in particular
for the diachronic and synchronic dialects and variants, to our knowledge, does
not exist.

2 Previous approaches

As far as Croatian is concerned, there are several documented attempts to de-
velop a lemmatizer and a tagger for the standard language.

To our knowledge, the currently online accessible lemmatizer for Croatian
described in [2] is based on a full-form word list with corresponding lemmata.
From a technological perspective such an approach has various disatvantages.
One is that morphotactic and phonotactic regularities are not exploited in rules,
and unknown words or unseen derivations are rejected, and thus manual work
is necessary for expansion and maintanance. Technically, a list-based approach
requires significantly more memory than a compressed FSA, since usually full-
forms and lemmata have to be stored as complete strings. The processing speed
in simple applications (even when using hashing) with tables is significantly
lower than FSA processing. Although hashing algorithms can help improving the
access speed, they tend to be even more demanding with respect to persistent
and runtime memory.

Other approaches related to lexical resources for lemmatization and morpho-
logical annotation of Croatian are documented in [3] and [4]. These approaches
describe the current effort, and potential uses of building morphological dictio-
naries, and their potential for text processing applications.

To our knowledge, there are no publicly available tools or resources otherwise.
As far as FSAs for morphological analysis are concerned, we are aware of the

fact that there are numerous tools, applications, FSA libraries and documenta-
tions available, both general and specific ones, and for all kinds of typologically
different languages. Mentioning and discussing them all is beyond the scope of
this paper. We mention the one that influenced our approach and design most,
i.e. the TAGH architecture, as discussed e.g. in [5]. Although we did not yet make
direct use of the Potsdam FSA library, we are grateful to the TAGH developers
for extremely valuable advice and suggestions, while planing our implementation.

As far as the GOLD ontology-based terminological source for annotations
in morphological analysis, but also in other linguistic annotation domains is
concerned, we are not aware of any similar approach. However, we are grateful to
authors of the following papers [6], [7], [1], [8], for for helpful hints and comments
related to this idea.4

3 Architecture

The architecture of CroMo is specified as follows. The algorithm expects an
input string and generates a list of possible morphemes with their byte offsets
within the input string, and corresponding linguistic feature sets, as well as two
types of lemma, a lemma generated from the morphological root, and a lemma

4 We are grateful to Helen Aristar Dry and Anthony Aristar for comments and sugges-
tions with respect to GOLD and its possible adaptation for improvement of common
interoperability issues with natural language resources and processing tools.

generated from the morphological base of the word. The two lemmata are equal,
if the word is neither morphologically derived, nor a compound of some kind.

In order to generate and compile a FSA as a recognizer with emission capa-
bilities, we create lists of all possible morphemes, sets of morphotactic rules, and
corresponding feature sets. For each morpheme recognized in the input string,
a corresponding feature set is emitted. In cases of ambiguous morphemes a set
of feature sets can be emitted. A morpheme is only recognized, and features are
emitted, if it is not only a morpheme or allomorph as specified in some mor-
pheme list, but if the necessary context is met, as specified in the morphotactic
rules.

Formally we specify the algorithm as follows. A morpheme m is an ordered
list of UTF8 encoded characters. Each linguistic feature f is defined as a binary
value encoded in one bit. A feature vector F is an ordered list of bits (or a
bit-vector). We extend the feature vector by using a portion of it to contain the
byte offset for position at which the lemma suffix is appended, as well as the
numerical ID of the lemma suffix as such, if applicable to the specific morpheme
type.

An emission a is a tuple of an integer for the byte offset position p in the
input string, and a feature vector F : a = (p, F). The offset p is determined during
runtime. F is specified prior to compilation in the morpheme specification and
via code generation tools. A set of emissions A is empty or contains a finite
number of different emissions a.

A morpheme set M is a set of tuples: (m, A). Thus each morpheme can be
specified by 0 or more emission tuples. Each morpheme set is merged into a
labeled morpheme set, a tuple (L, M, A), with L a unique label or name of the
morpheme set, i.e. for each morpheme set M there is a corresponding unique
label, and a set of emissions. Each morpheme set M is compiled into a non-
recursive deterministic FSA. A trivial (and arbitrary) example of a morpheme
definition is:

metl ((NOUN|ROOT|FEM, 0, 34))
boji ((VERB|ROOT|TRANS, 0, 21), (VERB|ROOT|TRANS, 1, 24))

The literal feature specification, together with the lemma offset and lemma ID is
transformed into a bit-vector representation during compilation, and translated
back to the literal representation during program output generation. This way,
the emission of feature sets and other transformation instructions within the
runtime system is encoded in a single 64-bit sequence (in our case), and thus
contributes to the minimization of speed and size of the binary automaton.

In the first experimental version, lemmata are generated by moving the nega-
tive offset of the identified root or base from the back to the front, and appending
the lemma-sufix with the corresponding ID. For Croatian we chose the rightmost
root morpheme to be the root of the root-lemma, while all morphemes without
the word-final inflectional suffixes are used for generation of the base-lemma.

Morphotactic rules are combinations of concatenations, unions etc. of mor-
pheme set labels using some variant of regular expression syntax, as specified for

example in Ragel. They can be recursive, if using e.g. the Kleene star operator.
A trivial (and arbitrary) example of a morphotactic rule definition is in Ragel
syntax:

verb1 = verb_pref_1 . verb_roots_2 . verb_suffixes_3

All morphotactic rules are united into one monolithic automaton, a FSA that
emits emission tuples at the entry edge of each path that starts a morpheme or
sub-morpheme, and also at the final state of such a path, as simplified in the
following graph:

S4

VERB | ROOT | TRANS | ENDEmit

S5

m

VERB | ROOT | TRANS | START

S0
Emit

S1

č

S2i S3t a

Entry and exit of a sub-path are marked with a special START/END bit in the
feature vector F of each emission. Some resulting output for a random sample
word in the current experimental version is:

metla
(metl) (0, 4, noun;feminine;root, metla, metla)
(a) (4, 6, noun;singular;nominative;suffix;inflectional)
(a) (4, 6, noun;plural;genitive;suffix;inflectional)

All morphemes that are compiled into the FSA, are grouped on the basis of being
subject to the same type of rules, and having mostly equal emission features.
We use exclusively morphotactic modeling, and exclude any modeling of two- or
multi-level derivations. Phonological phenomena across morpheme boundaries
for example are modeled as allomorphic variations, rather than phonological
derivations that are triggered by morphological ones. This way we can reduce the
complexity of rules, the resulting FSA, and the modeling effort for the linguist.

From the defined morphemes, feature sets and rules we generate grammar
definitions as Ragel code. The choice to use Ragel [9] as the automaton compiler
was based on our particular requirements, after evaluation of various common
compiler compilers, lexers, and FSA tools, and after implementing our own test-
ing algorithms. We require the possibility to associate potentially many emission
with one transition in the automaton, to cope with ambiguity, but be able to
keep the automaton deterministic. Ragel provides this capability since version
6.1.5 Further requirements were met by Ragel as well, i.e. Unicode compatibil-
ity, availability on multiple platforms as open source, and the ability to generate
extremely efficient code for various programming languages.
5 We are grateful for Adrian Thurston’s quick response and decision to significantly
improve Ragel’s usability for NLP by introducing this compiler flag.

The morphemes and their feature sets are edited in tables (e.g. OpenOffice
Calc), and together with the word formation rule sets these are automatically
compiled into Ragel code. The Ragel code is compiled into code of the target
language, which is then, together with the wrapper classes in C++ and/or Java
compiled into the target binary.

The following graph shows the general architecture and compilation process:

Morpheme tables

Ragel code

Code

Binary

DOT

Rules

Code

In this process, the lexicographers and linguists are only concerned with the
definition of morphemes and their feature sets, as well as morphological rule
definitions. Any change in the lexical basis can immediately enter CroMo via
one compilation step.

The code frame is kept general, and can be applied to other languages with
similar morphological patterns and properties (i.e. Slavic, and Indo-European
in general). The components are not only based on open and free tools, they
are open as well and freely available, thus encouraging application of the same
development environment to other languages.

3.1 The lexical base

Our morpheme sets were derived from initial lexical resources that existed in
various databases and Excel tables an the Institute of Croatian Language and
Linguistics (IHJJ), and were made available to us. The databases were sorted
on the basis of word classes, which were further sub-classified into morpheme
classes and paradigm classes etc.

For the initial automaton we used a set of root morphemes for all necessary
lexical classes, as described in table 1. Together with all possible allomorphs, in-
flectional and derivational suffixes, and (aspectual) prefixes, the morpheme-base
currently contains more than 250,000 morphemes. However, it is continuously
being extended. Due to the fact that we include word-formation rules that are
recursive (e.g. aspectual prefixes in Croatian can be cascaded), our coverage is
indefinite. This might be interpreted as over-generation. On the other hand, we
cover this way potentially words that are extremely rare, or cannot be found in
corpora, but are in principle well-formed.

Table 1. Root morpheme counts

Nouns 76,649 Verbs 24,441
feminine 36,767 perfective 12,284

masculine 35,374 imperfective 9,897
neuter 4,461 ambiguous 2,258

neuter/masculine 38
Others

adjectives 27,908 conjunctions 67
adverbs 7,672 particles 60

pronouns 129 interjections 390
prepositions 147 numbers 180

4 Evaluation

An evaluation of the analysis of words in terms of lexical coverage is pointless
in our case. All morphemes and word-formation rules that are defined, are also
recognized and annotated. If a word is not analyzed, it is being added to the
lexical base. The current version still lacks many morphemes found in the CLC
or other textual sources that must be dealt with. The final release will cover the
complete lexical items found in our lexical resources.

Interesting questions are rather related to performance and memory require-
ments.

As for the pure compilation and regeneration process of the C++ code, we
observe a memory requirement of up to 2,5 GB RAM using the GCC 4.2 on a
Linux system. The resulting binary file size of the monolithic FSA is less than
4 MB. We do not expect it to grow dramatically with the continuous expansion
of the morpheme base, as long as we stay in the current language environment.

The runtime behavior of the optimized binary, generating morphological seg-
mentation and lemmatization, is optimal. On an Intel Quad-Core Xeon CPU
at 1,86 GHz the automaton generates segmentations and lemmata for approx.
50,000 tokens in 1 second. The runtime behavior will not be affected dramatically
neither, with the expansion of the morpheme base.

Since the analyzer is not disambiguating, a qualitative analysis of the best
choice for the segmentation is pointless.

References

[1] Farrar, S.O.: An Ontology for Linguistics on the Semantic Web. PhD thesis, The
University of Arizona, Tucson, Arizona (2003)

[2] Tadić, M.: Croatian lemmatization server. In Koeva, S., Dimitrova-Voulchanova,
M., eds.: Proceedings of the 5th Formal approaches to South Slavic and Balkan
languages Conference (FASSBL2006), Sofia (2006) 140–146

[3] Tadić, M., Fulgosi, S.: Building the croatian morphological lexicon. In: Pro-
ceedings of the EACL2003 Workshop on Morphological Processing of Slavic Lan-
guages. (2003) 41–46

[4] Šnajder, J., Bašić, B.D., Tadić, M.: Automatic acquisition of inflectional lexica
for morphological normalisation. Information Processing and Management (0306-
4573) (2008)

[5] Geyken, A., Hanneforth, T.: TAGH: A complete morphology for german based
on weighted finite state automata. In Yli-Jyrä, A., Karttunen, L., Karhumäki,
J., eds.: FSMNLP. Volume 4002 of Lecture Notes in Computer Science., Springer
(September 2005) 55–66

[6] Farrar, S., Lewis, W.D.: The GOLD community of practice: An infrastructure for
linguistic data and the web. In: Language Resources and Evaluation. (2006) to
appear.

[7] Farrar, S.O., Langendoen, D.T.: A linguistic ontology for the semantic web. Glot
International 7(3) (March 2003) 1–4

[8] Farrar, S.O., Lewis, W.D., Langendoen, D.T.: A common ontology for linguistic
concepts. In Ide, N., Welty, C., eds.: Semantic Web Meets Language Resources:
Papers from the AAAI Workshop. AAAI Press, Menlo Park, CA (2002) 11–16

[9] Thurston, A.D.: Parsing computer languages with an automaton compiled from
a single regular expression. In: 11th International Conference on Implementation
and Application of Automata (CIAA 2006). Volume 4094 of Lecture Notes in
Computer Science., Taipei, Taiwan (August 2006) 285–286

[10] Yergeau, F.: RFC 2279: UTF-8, a transformation format of ISO 10646 (January
1998) Obsoletes RFC2044 [11]. Status: PROPOSED STANDARD.

[11] Yergeau, F.: RFC 2044: UTF-8, a transformation format of Unicode and ISO
10646 (October 1996) Obsoleted by RFC2279 [10]. Status: INFORMATIONAL.

