
Python for Computational Linguistics

Damir Ćavar
dcavar@indiana.edu

dcavar@unizd.hr

DGfS Herbstschule in Bochum

September 2005

© 2005 by Damir Ćavar

http://mypage.iu.edu/~dcavar/
mailto:dcavar@unizd.hr
mailto:dcavar@unizd.hr

Agenda

© 2005 by Damir Ćavar 1

Agenda

• Introduction to Python

© 2005 by Damir Ćavar 1

Agenda

• Introduction to Python

• Parsing

© 2005 by Damir Ćavar 1

Agenda

• Introduction to Python

• Parsing

• Statistics

© 2005 by Damir Ćavar 1

Agenda

• Introduction to Python

• Parsing

• Statistics

• Clustering

© 2005 by Damir Ćavar 1

Introduction to Python

• Installing and running Python

• Variables

– Integers, Floats, Strings, Lists, Tuples, Dictionaries

• Arithmetic Expressions

• Flow control

– Conditions
– Loops
– Functions

© 2005 by Damir Ćavar 2

Introduction to Python

• Modules

• Classes

• Input and Output

• Exceptions

© 2005 by Damir Ćavar 3

Parsing

• Parsing a grammar (CFG)

• Simple top-down parsing

• Simple bottom-up parsing

• Chart parsing

© 2005 by Damir Ćavar 4

Statistics

• Counting characters, words

• Creating frequency profiles, maximum likelihood

• N-gram models

• Language Identification

• Calculating Information theoretic measures (Entropy, Mutual In-
formation, Relative Entropy)

© 2005 by Damir Ćavar 5

Clustering

• K-means document

• Expectation maximization

© 2005 by Damir Ćavar 6

Obtaining Python

• Development environment:

– Python is Free and Open
– It comes with most systems: FreeBSD, Linux, and Mac OSX
– It can be installed on any OS, e. g. Microsoft Windows:
∗ Python.org
∗ ActiveState.com

© 2005 by Damir Ćavar 7

http://www.freebsd.org/
http://www.apple.com/macosx/
http://www.python.org/
http://www.activestate.com/

Readings

• Free online recourses

– Python.org
– Dive into Python
– Thinking in Python
– A Byte of Python
– How to think like a computer scientist

© 2005 by Damir Ćavar 8

http://www.python.org/doc/
http://diveintopython.org/
http://www.mindview.net/Books/TIPython
http://www.dpawson.co.uk/bop/
http://www.ibiblio.org/obp/thinkCSpy/

Readings

• Books

– Programming Python [Lutz(1996)]
– Learning Python [Lutz and Ascher(1999)]
– Python in a Nutshell [Martelli(2003)]
– Python Cookbook [Martelli and Ascher(2002)]
– Python Pocket Reference [Lutz(1998)]

© 2005 by Damir Ćavar 9

http://www.oreilly.com/catalog/python2/
http://www.oreilly.com/catalog/lpython2/
http://www.oreilly.com/catalog/pythonian/
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://www.oreilly.com/catalog/pythonpr3/

Extensions

• Natural Language Toolkit (NLTK)

• Numerical Python

• SciPy – Scientific tools for Python

• Bob Ippolito’s Python Stuff

• Vaults of Parnassus: Python Resources

• Mark Hammond’s free stuff

© 2005 by Damir Ćavar 10

http://nltk.sourceforge.net/
http://numeric.scipy.org/
http://www.scipy.org/
http://undefined.org/python/
http://py.vaults.ca/parnassus/apyllo.py/
http://starship.python.net/crew/mhammond/

Summary

• Python V. 2.4.1

– High-level open and free programming language
– System independent
– Practical relevance (.NET, MONO & WebServices)
– Rich toolset, NLP toolkits
– Object oriented, functional, list processing, scripting, Unicode

& XML support, low turnaround times
– GUI: Qt, Tcl/Tk, GTK, Java, Aqua, etc.
– Integrated in application (e. g. Vim)

© 2005 by Damir Ćavar 11

http://www.microsoft.com/net/default.mspx
http://www.mono-project.com/Main_Page
http://www.webservices.org/
http://www.trolltech.com/products/qt/index.html
http://www.tcl.tk/
http://www.gtk.org/
http://java.sun.com/
http://www.vim.org/

Starting Python

• Command line or IDE (or double click on Python script)

• Command line:

Damirs:~ dcavar$ python

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)

[GCC 3.3 20030304 (Apple Computer, Inc. build 1666)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

© 2005 by Damir Ćavar 12

Command line

• Exit the interactive Python interpreter:

– Unix: Ctrl-D

– Windows: Ctrl-Z

– Commands:

>>> raise SystemExit

or

>>> import sys

>>> sys.exit()

© 2005 by Damir Ćavar 13

Interaction

• Hello-world example:

>>> print "Hello world!"

Hello world!

>>>

• helloworld.py from within the interactive Python interpreter:

>>> execfile("helloworld.py")

Hello world!

>>>

© 2005 by Damir Ćavar 14

Interaction

• Via command-line and file: helloworld.py

Damirs:~ dcavar$ python helloworld.py

Hello world!

Damirs:~ dcavar$

• and remaining in interactive mode after execution:

Damirs:~ dcavar$ python -i helloworld.py

Hello world!

>>>

© 2005 by Damir Ćavar 15

Calculating with Python

>>> 5 + 4

9

>>> 5 * 3

15

>>> 6 / 2

3

>>> 7 - 3

4

>>> (4 - 2) * 5

10

>>> 4 - 2 * 5

-6

© 2005 by Damir Ćavar 16

Variables

• Dynamically typed

– Types do not have to be declared in the program.
– Types of variables can change during program flow, i. e. in-

tegers can become strings or lists and vice versa.

• Garbage collection

– No allocation and memory handling for variables and their con-
tent from the programmers perspective.

© 2005 by Damir Ćavar 17

Integers

• Example: integers and simple arithmetic

>>> myValue = 9

>>> newValue = myValue - 4

>>> myValue

9

>>> newValue

5

>>>

© 2005 by Damir Ćavar 18

Floating point numbers

• Example: floats and integers and simple arithmetic

>>> myValue = 9.0

>>> newValue = myValue + 4

>>> myValue

9.0

>>> newValue

13.0

>>>

© 2005 by Damir Ćavar 19

Numeric Operations

Operation Result

x + y sum of x and y

x − y difference of x and y

x * y product of x and y

x / y quotient of x and y

x % y remainder of x / y

−x x negated

+x x unchanged

abs(x) absolute value or magnitude of x

int(x) x converted to integer

long(x) x converted to long integer

float(x) x converted to floating point

complex(re,im) a complex number with real part re,
imaginary part im. im defaults to zero.

c.conjugate() conjugate of the complex number c

divmod(x, y) the pair (x / y, x % y)

pow(x, y) x to the power y

x ** y x to the power y

© 2005 by Damir Ćavar 20

Strings

• Quoting strings:

"This is an example."

’This is an example.’

• Escape character for quotes in string:

"John said: \"Hello.\""

• or simply different quotes:

’John said: "Hello."’

© 2005 by Damir Ćavar 21

String Variables

>>> text = "Hello world!"

>>> text

’Hello world!’

>>>

• text is a placeholder for, or name of the string "Hello world!"

• text refers or points to the string "Hello world!", which is auto-
matically allocated and stored in memory, and freed after no
longer in use.

© 2005 by Damir Ćavar 22

String Operations

• Concatenation:

>>> text = "Hello world!"

>>> text = text + " How are you?"

>>> text

’Hello world! How are you?’

>>> other = " OK!"

>>> text = text + other

>>> text

’Hello world! How are you? OK!’

© 2005 by Damir Ćavar 23

String Operations

• Multiplication:

>>> text = 2 * text

>>> text

’Hello world! How are you? OK!Hello world! How are you? OK!’

>>> text = "Hello world!"

>>> text = 5 * " " + text + 5 * " "

>>> text

’ Hello world! ’

© 2005 by Damir Ćavar 24

String Operations

• Accessing characters by position:

>>> text = "Hello world!"

>>> text[0]

’H’

>>> text[1]

’e’

>>> text[12]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

© 2005 by Damir Ćavar 25

String Operations

• Accessing characters by position backwards:

>>> text[-1]

’!’

>>> text[-2]

’d’

>>> text[-13]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

© 2005 by Damir Ćavar 26

String Operations

• Accessing characters by position backwards:

>>> text[-1]

’!’

>>> text[-2]

’d’

>>> text[-13]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

© 2005 by Damir Ćavar 27

String Operations

• Slicing:

>>> text[0:3]

’Hel’

>>> text[0:1]

’H’

>>> text[:-1]

’Hello world’

>>> text[1:]

’ello world!’

>>> text[:]

’Hello world!’

© 2005 by Damir Ćavar 28

String Operations

• Assigning to indexed or sliced position:

>>> text[1] = "a"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

>>> text[1:2] = "a"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn’t support slice assignment

© 2005 by Damir Ćavar 29

String Operations

• Setting indexed or sliced position:

>>> text = text[0] + "a" + text[2:]

>>> text

’Hallo world!’

>>> text = text[:1] + "e" + text[2:]

>>> text

’Hello world!’

>>> text = text[:2] + text[3:]

>>> text

’Helo world!’

© 2005 by Damir Ćavar 30

String Operations

• Notes:

– Forward indexing starts with 0

– Backward indexing starts with -1

– Index out of range exception occurs if index out of bounds
– text is equivalent to text[:]

– Assignment of values to indexed positions or slices is not pos-
sible with string types, i. e. strings are immutable objects.

– Changing strings implies internal reallocation of a new string
variable, thus expensive memory operations.

© 2005 by Damir Ćavar 31

String Operations

• Performance issues with string concatenation:

– In potentially long loops with concatenation operations, in-
stead of:
text = text[:1] + "e" + text[2:]

– use:
text = "".join([text[:1], "e", text[2:]])

© 2005 by Damir Ćavar 32

String Operations

• Integers or floats to strings:

>>> a = 0.9

>>> str(a)

’0.9’

>>> b = 5

>>> str(b)

’5’

>>> text = text + " " + str(a) + " " + str(b)

>>> text

’Halo world! 0.9 5’

© 2005 by Damir Ćavar 33

String Operations

• Integers or floats to strings:

>>> text = text + a + b

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: cannot concatenate ’str’ and ’float’ objects

>>> repr(a)

’0.90000000000000002’

>>> repr(b)

’5’

© 2005 by Damir Ćavar 34

String Types

• Escape sequences in strings:

– Newline ("\n") raw and interpreted:

>>> text = "Line 1\nLine 2"

>>> print text

Line 1

Line 2

>>> text = r"Line 1\nLine 2"

>>> print text

Line 1\nLine 2

© 2005 by Damir Ćavar 35

String Types

• Unicode strings:

– Default: all strings are based on (8–bit) 128 ASCII encoded
characters, to change the default, start Python with the option
−U:
Damirs:∼dcavar$ python −U

– Prepend Unicode strings with:
∗ escape sequences interpreted: u"text"

∗ raw unicode strings: ur"text"

– Specific encoding: u"text".encode(’utf-8’)

– Convert from one encoding to another:
unicode(text, ’utf-8’)

© 2005 by Damir Ćavar 36

http://www.unicode.org/
http://www.unicode.org/

String Operations

• Strings are sequence types:

– sequences of characters (single byte or multi-byte characters)
– all sequence types can be subject of sequence operations
∗ indexing & slicing
∗ membership
∗ concatenation & shallow multiplication
∗ length
∗ min & max value

© 2005 by Damir Ćavar 37

Sequence Operations

Operation Result

x in s True if an item of s is equal to x, else False

x not in s False if an item of s is equal to x, else True

s + t the concatenation of s and t

s * n , n * s n shallow copies of s concatenated
s[i] i’th item of s, origin 0

s[i:j] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

© 2005 by Damir Ćavar 38

Sequence Methods

• Some selection:

capitalize()

find(sub[, start[, end]]), rfind(sub [,start [,end]])

index(sub[, start[, end]]), rindex(sub[, start[, end]])

lower(), upper()

strip([chars]), lstrip([chars]), rstrip([chars])

replace(old, new[, count])

split([sep [,maxsplit]])

startswith(prefix[, start[, end]]) endswith(suffix[, start[, end]])

>>> text.split()

[’Line’, ’1\nLine’, ’2’]

© 2005 by Damir Ćavar 39

Lists

• Mutable objects

• Sequence types, with any data type in any combination as ele-
ments:

>>> text.split()

[’Line’, ’1\nLine’, ’2’]

>>> e = ["test", 56, 6.0, ["probe", 6], 7]

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> len(e)

5

© 2005 by Damir Ćavar 40

Lists

• Index and slice access:

– index returns an element
– slice returns a list

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> e[0]

’test’

>>> e[1:2]

[56]

>>> e[0:2]

[’test’, 56]

© 2005 by Damir Ćavar 41

Lists

• Lists are mutable:

– index or slice access to change elements is possible

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> e[3] = 45

>>> e

[’test’, 56, 6.0, 45, 7]

>>> e[2:4] = [3, 5]

>>> e

[’test’, 56, 3, 5, 7]

© 2005 by Damir Ćavar 42

Lists

• Care with variable names and assignments:

– assigning a list variable to another variable does not copy the
list!

>>> f = e

>>> f

[’test’, 56, 3, 5, 7]

>>> f[3] = 0.4

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]

© 2005 by Damir Ćavar 43

Lists

• Care with variable names and assignments:

– copy of lists assigned to another variable

>>> f = e[:]

>>> f

[’test’, 56, 3, 0.40000000000000002, 7]

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]

>>> f[3] = 3

>>> f

[’test’, 56, 3, 3, 7]

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]

© 2005 by Damir Ćavar 44

Lists

• Detailed control over cloning objects (e. g. lists):

– copy module: copy and deepcopy

>>> import copy

>>> f = copy.copy(e) # shallow copy

>>> f = copy.deepcopy(e) # recursive deep copy

>>>

© 2005 by Damir Ćavar 45

Lists

• Concatenation and multiplication of lists:

>>> f

[’test’, 56, 3, 456, 3, 7]

>>> f = 2 * f

>>> f

[’test’, 56, 3, 456, 3, 7, ’test’, 56, 3, 456, 3, 7]

>>> f = f + [34]

>>> f

[’test’, 56, 3, 456, 3, 7, ’test’, 56, 3, 456, 3, 7, 34]

© 2005 by Damir Ćavar 46

List Operations

Operation Result

s[i] = x item i of s is replaced by x

s[i:j] = t slice of s from i to j is replaced by t

del s[i:j] same as s[i:j] = []

s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t

del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) same as s[len(s):len(s)] = [x]

s.extend(x) same as s[len(s):len(s)] = x

s.count(x) return number of i’s for which s[i] == x

s.index(x[, i[, j]]) return smallest k such that s[k] == x and i <= k < j

s.insert(i, x) same as s[i:i] = [x]

s.pop([i]) same as x = s[i]; del s[i]; return x

s.remove(x) same as del s[s.index(x)]

s.reverse() reverses the items of s in place
s.sort([cmp[, key[, reverse]]]) sort the items of s in place

© 2005 by Damir Ćavar 47

Tuples

• Immutable ordered sequences:

– Usually more efficient than list objects

>>> e = (1, "test", 7.0, (3, 5), [6, 2, "probe"])

>>> e

(1, ’test’, 7.0, (3, 5), [6, 2, ’probe’])

>>> e[3]

(3, 5)

>>> e[3:]

((3, 5), [6, 2, ’probe’])

© 2005 by Damir Ćavar 48

Tuples

• Elements in tuples can be mutable:

>>> e

(1, ’test’, 7.0, (3, 5), [6, 2, ’probe’])

>>> e[4][0] = 5

>>> e

(1, ’test’, 7.0, (3, 5), [5, 2, ’probe’])

>>> e[3][1] = 4

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

© 2005 by Damir Ćavar 49

Dictionaries

• Data structures for key-value pairs (Hash-tables):

– Fast access to large data collections based on keys and values.
– A dictionary is an unordered collection of key-value pairs.
– There can only be one key with one corresponding value in

one dictionary!
– Valid keys can only be immutable objects!
– Typical CL application is dictionaries, frequency tables, n-gram

models, rule sets, etc.
– This is one of the most important data structures in the fol-

lowing!

© 2005 by Damir Ćavar 50

Dictionaries

• Using dictionaries:

>>> e = { "key1":"value1", "key2":[1, 2], "key3":34 }

>>> e

{’key3’: 34, ’key2’: [1, 2], ’key1’: ’value1’}

>>> e["key4"] = 34

>>> e["key2"] = 23

>>> e

{’key3’: 34, ’key2’: 23, ’key1’: ’value1’, ’key4’: 34}

>>> e["key1"]

’value1’

© 2005 by Damir Ćavar 51

Dictionaries

• Accessing and checking for keys:

>>> e.keys()

[’key3’, ’key2’, ’key1’, ’key4’]

>>> e.has_key("key1")

True

>>> e.has_key("key65")

False

>>> e["key65"]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

KeyError: ’key65’

© 2005 by Damir Ćavar 52

Dictionaries

• Key and value types:

>>> e[1] = 34

>>> e["house"] = "Haus"

>>> e["house"] = ["N", "Haus"]

>>> e["house"] = ("N", "Haus")

>>> e[(1, 2)] = 87

>>> e[[1, 2]] = 96

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

© 2005 by Damir Ćavar 53

Flow Control

• Conditions

• Loops

• Functions

© 2005 by Damir Ćavar 54

Conditions

• Conditional execution of code blocks (True/False, certain values)

– Indention-based code blocks (either space- or tab-marked)
– Lines belonging to one code block have the same amount of

space- or tab-characters in the beginning of the line.

>>> if 1 > 0:

... print "Hello!"

... else:

... print "Hallo!"

...

Hello!

© 2005 by Damir Ćavar 55

Conditions

• Testing conditions with: <, >, >=, <=, ==, !=, and, or, not

if i > 0:

print "i is positive"

elif i == 0:

print "i equals 0"

else:

print "i is negative"

if "a" not in ["test", "b", "c"]:

pass

else:

print "a"

© 2005 by Damir Ćavar 56

Conditions

• Testing for an element in a sequence:
if x in y

or
if x not in y

– y can be a string, tuple, list

• Empty code blocks: pass

© 2005 by Damir Ćavar 57

Conditions

• Testing over variable values and content: integers
(if value is 0, return False, else return True)

>>> a = 5

>>> if a:

... print "test"

...

test

>>> a = 0

>>> if a:

... print "test"

...

>>>

© 2005 by Damir Ćavar 58

Conditions

• Testing over variable values and content: strings
(if string is empty, return False, else return True)

>>> a = "Hello"

>>> if a:

... print "test"

...

test

>>> a = ""

>>> if a:

... print "test"

...

>>>

© 2005 by Damir Ćavar 59

Loops

• Looping over values:

>>> a = 5

>>> while a > 0:

... print "a =", a

... a = a - 1

...

a = 5

a = 4

a = 3

a = 2

a = 1

>>>

© 2005 by Damir Ćavar 60

Loops

• Looping over values with internal break condition:

>>> a = 5

>>> while True:

... print "a =", a

... a -= 1

... if a == 0:

... break

...

a = 5

a = 4

a = 3

a = 2

a = 1

© 2005 by Damir Ćavar 61

Loops over Sequences

• Sequential sequence processing:

>>> a = ["a", "b", "c"]

>>> for i in a:

... print i

...

a

b

c

© 2005 by Damir Ćavar 62

Loops over Sequences

• Inefficient sequential sequence processing:

>>> a = [1, 2, 3]

>>> b = []

>>> for i in a:

... b.append(float(i))

...

>>> b

[1.0, 2.0, 3.0]

© 2005 by Damir Ćavar 63

Loops over Sequences

• More efficient: list comprehension

– Loop over all list elements, apply a function to each of them,
and return a list with the resulting values.

– This is the fastest an most efficient solution in Python!

>>> a = [1, 2, 3]

>>> b = [float(i) for i in a]

>>> b

[1.0, 2.0, 3.0]

© 2005 by Damir Ćavar 64

Loops over Sequences

• Index based loop: range(n)

– Returns as default a list of numbers from 0 till n-1
– Looping over the index positions of a list via range(len(text))

– Necessary to access elements from sequences (lists, tuples,
strings) by position

© 2005 by Damir Ćavar 65

Functions

• Functions and recursion:

>>> def fact(num):

... if num == 1:

... return 1

... else:

... return num * fact(num - 1)

...

>>> fact (3)

6

>>> fact(6)

720

© 2005 by Damir Ćavar 66

Return Values of Functions

• Unpacking of function return values:

>>> def convert(text):

... return text, text.lower(), text.upper()

...

>>> convert("Hello")

(’Hello’, ’hello’, ’HELLO’)

>>> a, b, c = convert("Hello")

>>> a

’Hello’

>>> b

’hello’

>>> c

’HELLO’

© 2005 by Damir Ćavar 67

Functions and Modules

• Functions stored in Python code files

– Reuse of functions via import in Python programs
– Naming conventions! Example: string

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’]

>>> import string

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’string’]

>>> dir(string)

[’Template’, ’_TemplateMetaclass’, ’__builtins__’, ’__doc__’, (...)

’center’, ’count’, ’digits’, ’expandtabs’, ’find’, ’hexdigits’, (...)]

© 2005 by Damir Ćavar 68

Functions and Modules

• Using imported functions: module-name.function-name

>>> import string

>>> string.split("Hello world!")

[’Hello’, ’world!’]

>>> import math

>>> math.log(2)

0.69314718055994529

>>> math.log(1)

0.0

© 2005 by Damir Ćavar 69

Functions and Modules

• Importing only specific functions:
from module import function

>>> from math import log

>>> log(2)

0.69314718055994529

>>> log(1)

0.0

© 2005 by Damir Ćavar 70

Input and Output

• Reading data from files: python readfile.py

file = open("readfile.py")

text = file.read()

file.close()

print text

© 2005 by Damir Ćavar 71

Input and Output

• Reading data from files line by line: python readfilel.py

file = open("readfilel.py")

text = file.readlines()

file.close()

for i in text:

print i,

© 2005 by Damir Ćavar 72

Input and Output

• Reading data from files line by line and processing each line
immediately:
python readfilelp.py

file = open("readfilelp.py", "r")

line = file.readline()

while line:

print line,

line = file.readline()

file.close()

© 2005 by Damir Ćavar 73

Input and Output

• Compact reading of data from file: python readfilec.py

print = open("readfilec.py").read()

© 2005 by Damir Ćavar 74

Input and Output

• Writing data to file: python writefile.py

text = "This is a test."

file = open("test.txt", "w")

file.write(text)

file.close()

© 2005 by Damir Ćavar 75

Input and Output

• Appending data to a file (creating it, if it doesn’t exist):
python writefile.py

text = "This is a test."

file = open("test.txt", "a")

file.write(text)

file.close()

© 2005 by Damir Ćavar 76

Input and Output

• Writing Unicode (UTF-8) text data to a file:
python writefileHR.py

text = u"Pokušati ćemo pisati hrvatski tekst."

file = open("test.txt", "w")

file.write(text)

file.close()

Damirs:~/Code dcavar$ python writefileHR.py

sys:1: DeprecationWarning: Non-ASCII character ’\xc5’ in file writefileHR.py on line 1, but no encoding declared; see http://www.python.org/peps/pep-0263.html for details

Traceback (most recent call last):

File "writefileHR.py", line 3, in ?

file.write(text)

UnicodeEncodeError: ’ascii’ codec can’t encode characters in position 4-5: ordinal not in range(128)

© 2005 by Damir Ćavar 77

Input and Output

• Writing Unicode (UTF-8) text data to a file:
python writefileHR1.py

-*- coding: utf8 -*-

import codecs

text = u"Pokušati ćemo pisati hrvatski tekst."

file = codecs.open("test.txt", "w", "utf8")

file.write(text)

file.close()

© 2005 by Damir Ćavar 78

Exceptions

• Various functions throw exceptions:
python readfileN.py

file = open("some.txt")

text = file.read()

file.close()

print text

Traceback (most recent call last):

File "readfileN.py", line 1, in ?

file = open("some.txt")

IOError: [Errno 2] No such file or directory: ’some.txt’

© 2005 by Damir Ćavar 79

Exceptions

• Various functions throw exceptions:
python readfileNE.py

try:

file = open("some.txt")

text = file.read()

file.close()

except IOError:

print "Cannot open file some.txt."

else:

print text

© 2005 by Damir Ćavar 80

Comments

• Comments in the code:

reading in the data

#

file = open("some.txt")

text = file.read()

file.close()

© 2005 by Damir Ćavar 81

Documentation

• Every file, function, or class can be documented:

"""

File: test.py

Author: Damir Cavar

Date: 05-09-20

Purpose: Showing Python documentation features.

"""

def test(text):

"""Testing the print features.

Parameter: text, a string containing the text to be printed."""

print text

© 2005 by Damir Ćavar 82

Documentation

• Generating documentation documents with pydoc:

– Help on pydoc on the web and by starting pydoc without para-
meters in the command-line shell:
Damirs: / dcavar$ pydoc

Damirs:~/ dcavar$ pydoc -w ./test.py

wrote test.html

© 2005 by Damir Ćavar 83

Classes

• Object oriented encapsulation of data and functions:

– specific data structures
– specific methods to manipulate the encapsulated data
– modularity and reusability, complexity etc.
– Example:
∗ Phrase structure rules of the type: NP -> DET N

∗ Structure: left-hand side, arrow, right-hand side
∗ LHS: only one symbol
∗ RHS: any number of symbols
∗ Symbols: any combination of non-whitespace characters

© 2005 by Damir Ćavar 84

Grammar Parsing

• Reading a grammar from a file into a data-structure:

– opening a file
– reading in line by line
– skipping comment lines or empty lines
– splitting lines with rules into LHS and RHS
– storing LHS with its corresponding RHS

© 2005 by Damir Ćavar 85

Grammar Parsing

• Grammar parser:

– example grammar: grammar.txt

– writing grammar parser...
– see grammar.py

© 2005 by Damir Ćavar 86

Grammar Parsing

• Conceptual questions:

– What will be the use of the code?
∗ Who will use it how for what purpose?

– What data structures do we need?
∗ Determine all the major storage variables.

– What shall we be able to do with the data structure?
∗ Determine the major functions to process, access, change,

use the internal data structures.

© 2005 by Damir Ćavar 87

Parsing and Phrase Structure Grammar

• Top-down parsing:

– Replace goal symbol with symbols and symbols with terminals
until the terminals match.

• Bottom-up parsing:

– Replace terminals with symbols and symbols with symbols until
the goal symbol is reached.

© 2005 by Damir Ćavar 88

Parsing

• Parsing strategies:

– Top-down parsing
– Bottom-up parsing

• Processing strategies:

– Breadth first
– Depth first

© 2005 by Damir Ćavar 89

Parsing

• What problems do different strategies have?

– Recursion
– Multiple choices
∗ Backtracking
∗ Agenda

© 2005 by Damir Ćavar 90

Parsing

• Implementation: (TDAParser.py)

– Top-down with weak generative capacity:
∗ Input 1: tokenized sentence
∗ Input 2: grammar and goal-symbol
∗ Output: yes/no or successful/failed parse

© 2005 by Damir Ćavar 91

Chart Parser Implementation

• Main part:

– Program initialization vs. module import:

if __name__ == "__main__":

parse(["John", "kissed", "Mary"])

© 2005 by Damir Ćavar 92

Parsing

• Top-down implementation:

– Input 1: tokenized sentence
– Input 2: goal-symbol
∗ Assume two lists: Input1 and Input2
∗ Success: replace symbols in Input2 until Input1 equals Input2
∗ Failure: no replacement possible, Input1 does not equal In-

put2

© 2005 by Damir Ćavar 93

Parsing

• Top-down implementation:

– see code example in ZIP file TDA1.zip:
1. TDAParser.py
2. grammar.txt
3. grammar.py

© 2005 by Damir Ćavar 94

Parsing Strategy

• Two lists:

– Input list: [’John’, ’kissed’, ’Mary’]

– Parse list: [’S’]

• If lists are equal after applying replacement on the Parse list, the
parse is successful.

© 2005 by Damir Ćavar 95

Parsing Strategy

• Reduce lists every time there is a partial match:

– Input list: [’John’, ’kissed’, ’Mary’] → [’kissed’, ’Mary’]

– Parse list: [’John’, ’VP’] → [’VP’]

• Intuition: there is a parse for the sentence if
[’kissed’, ’Mary’] can be derived from [’VP’]

• Continue parsing with the reduced lists

© 2005 by Damir Ćavar 96

Parsing Strategy

• Conditions:

– Parsing is successful if we end up with:
∗ Input list = []
∗ Parsing list = []

– Parsing fails if:
∗ One list is empty and the other not
∗ Both lists are not empty and there is no possibility to reduce

them or apply further replacement

© 2005 by Damir Ćavar 97

Parsing Strategy

• Improvement of the parsers:

– Ordering of rules: more common rules first
∗ Try manipulating the order of rules in the grammar, e. g. the

VP rules with transitive or intransitive VPs
– Number of symbols in RHS cannot be bigger than number of

symbols and/or terminals in the input
– Tagging the input first
– Depth-first rather than breadth-first with respect to the

agenda

© 2005 by Damir Ćavar 98

Parsing Strategy

• Improvement of parser:

– Tagging the input first
– Depth-first rather than breadth-first with respect to the

agenda
– Recursive function calls vs. loop

© 2005 by Damir Ćavar 99

Parsing Strategy

• Bottom-up parsing:

– Replace the input tokens until the input list consists of the
goal symbol only.

– Example implementation: loop and not recursive function call
∗ Advantage: no stack-overflow with long input sentences.

– Example: BUAParser.py

© 2005 by Damir Ćavar 100

Parsing Strategy

• Problems:

– Dependencies between tokens in the clause
∗ agreement, binding, negative polarity and other particles,

idioms, anaphoric relations, periphrastic constructions etc.
– Structures depend on the properties of tokens and vice versa
∗ transitivity of verbs, selectional properties

© 2005 by Damir Ćavar 101

Parsing Strategy

• Problems:

– Grammars
∗ recursion: unlimited number of elements on the agenda?
∗ empty elements or traces

© 2005 by Damir Ćavar 102

Parsing Strategy

• Problems observed:

– Reanalysis of already analyzed constituents
– Search through all grammar rules

• Solution:

– Memorize analyzed constituents
– Choose appropriate rules

© 2005 by Damir Ćavar 103

Parsing Strategy

• Solution:

– Chart Parsing
∗ Chart as memory
∗ Selection of relevant rules from grammar

© 2005 by Damir Ćavar 104

Chart Parsing

• Chart:

– Storage for complete and incomplete constituents
– Edges
∗ Dotted rule
∗ Index

© 2005 by Damir Ćavar 105

Chart Parsing

• Chart:

– Storage for complete and incomplete constituents
– Edges
∗ Dotted rule: VP → V • NP
∗ Index:
· Left and right position of the edge span
· Position of the dot in the RHS

© 2005 by Damir Ćavar 106

Chart Parsing

• Edges:

– Dotted rule: VP → V • NP

How much of the input at which position matches which part
of the RHS of the rule?

– Example:
∗ Input: ["John", "loves", "Mary"]

∗ Edge: ((1, 2, 1, V → loves •))

© 2005 by Damir Ćavar 107

Chart Parsing

• Edges:

– Inactive edge: (1, 2, 1, V → loves •)
∗ Complete constituent

– Active edge: (1, 2, 1, VP → V • NP)

∗ Incomplete constituent

© 2005 by Damir Ćavar 108

Chart Parsing

• Adding edges to chart:

– Initialization
∗ Bottom-up strategy: For every token add an inactive edge

to chart
edge(0, 1, 1, N → John •)
edge(1, 2, 1, V → kissed •)
edge(2, 3, 1, N → Mary •)

– Rule invocation: Matching edges with rules
– Fundamental rule: Matching active and inactive edges on

the chart

© 2005 by Damir Ćavar 109

Chart Parsing

• Initialization:

– Top-down strategy:
– For every token add an inactive edge to chart.
– For every rule with start-symbol in LHS add active edge to

chart:
∗ edge(0, 1, 0, S → • NP VP)

© 2005 by Damir Ćavar 110

Chart Parsing

• Rule Invocation:

– Bottom-up strategy:
– For every inactive edge on chart:
∗ Find rules that have its LHS on their left periphery in RHS
∗ Create new edges and add to chart.

– Example:
∗ Inactive edge: edge(0, 1, 1, N → John •)
∗ Rule: NP → N

∗ New edge: edge(0, 0, 0, NP → • N)

© 2005 by Damir Ćavar 111

Chart Parsing

• Fundamental Rule:

– Move inactive edge from agenda to chart
– For inactive edge find edge that expects it
∗ edge(0, 1, 1, NP → N •)
∗ edge(0, 0, 0, S → • NP VP)

– Add resulting edge to agenda:
∗ edge(0, 1, 1, S → NP • VP)

© 2005 by Damir Ćavar 112

Chart Parsing

• Bottom-up:

1: Initialize agenda

2: Repeat until edges in agenda

Process first edge on agenda

If edge inactive:

move inactive edge to chart

Function RuleInvocation

Function FundamentalRule

• Result:
If chart contains over-spanning edges, these represent possible parses of the

input.

© 2005 by Damir Ćavar 113

Chart Parsing

• Process example:

– Grammar: grammar.txt

– Implementation: Charty.py

© 2005 by Damir Ćavar 114

Chart Parsing

• Step by step:

– Initialize chart with the next word of the utterance, i. e. create
edge with the lexical rule

– Find rules in the grammar that consume the symbol of the
inactive edges on the chart, i. e. extend the chart with edges
that have LHS-symbols of inactive edges at the left periphery
of their RHS

– Create new edges by combining active with inactive edges:
∗ end-symbol of one is beginning of other
∗ expectation symbol of active edge corresponds to LHS of

inactive edge

© 2005 by Damir Ćavar 115

Chart Parsing

• Motivation:

– Problems with backtracking (our brute-force) parsers:
∗ Repetitive parsing of same token(list)s
∗ Repetitive parsing of paths that turned out to be unsuccess-

ful
∗ Unknown words and partial structures lead to a failure

– Chart parser (e. g. Earley parser):
∗ Avoid parsing of same token(list)s by memorization in chart
∗ Memorize parses for partial structures
· If a spanning analysis is impossible, the chart contains the
partial analyses

© 2005 by Damir Ćavar 116

Chart Parsing

• Motivation:

– Chart parser (e. g. Earley parser):
∗ Compact representation for ambiguous structures (multiple

parses)

© 2005 by Damir Ćavar 117

Chart Parsing

• Edges:

– Directed graph: start point, end point, analysis
– Input: ["John", "kissed", "Mary"]

– Final chart:
(0, 1, N, [John •]) (0, 1, NP, [N •])
(1, 2, V, [kissed •]) (2, 3, NP, [N •])
(2, 3, N, [Mary •]) (1, 3, VP, [V NP •])
(0, 3, S, [NP VP •])

© 2005 by Damir Ćavar 118

Chart Parsing

• Bottom-up strategy:

– Initialization (scan, tagging)
∗ Add edges with lexical rules for each token (incrementally)

– Rule invocation (prediction)
– Fundamental rule (completion)

© 2005 by Damir Ćavar 119

Chart Parsing

• Bottom-up strategy:

– Rule Invocation:
For every inactive edge on chart:
∗ Find rules that have its LHS on their left periphery in RHS.
∗ Create new edges and add to chart.

© 2005 by Damir Ćavar 120

Chart Parsing

• Bottom-up rule invocation example:

– Inactive edge:
edge(0, 1, N → John •)

– Rule:
NP → N

– New edge:
edge(0, 0, NP → • N)

© 2005 by Damir Ćavar 121

Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 1, N → John •)
edge(0, 0, NP → • N)

– Merge edges and add resulting edge to chart:
edge(0, 1, NP → N •)

© 2005 by Damir Ćavar 122

Chart Parsing

• Top-down strategy:

– Initialization
∗ Add edges with rules with goal symbol on LHS (increment-

ally)
– Rule invocation (prediction)
– Fundamental rule (completion)

© 2005 by Damir Ćavar 123

Chart Parsing

• Top-down strategy:

– Rule Invocation:
For every active edge on chart:
∗ Find rules that have its left peripheral symbol from the ex-

pected RHS on their LHS. The left peripheral symbol from
the expected RHS is the first symbol following the DOT.

∗ Create new edges and add to chart.

© 2005 by Damir Ćavar 124

Chart Parsing

• Top-down rule invocation example:

– Active edge:
edge(0, 0, S → • NP VP)

– Rule:
NP → N

– New edge:
edge(0, 0, NP → • N)

© 2005 by Damir Ćavar 125

Chart Parsing

• Top-down rule invocation depth-first:

– Active edge:
edge(0, 0, S → • NP VP)

– Rules:
NP → N;
N → John

– New edges:
edge(0, 0, NP → • N)

edge(0, 0, N → • John)

© 2005 by Damir Ćavar 126

Chart Parsing

• Top-down after rule invocation and fundamental rule:

– New edges:
edge(0, 1, S → NP • VP)

edge(0, 1, NP → N •)
edge(0, 1, N → John •)

© 2005 by Damir Ćavar 127

Chart Parsing

• Top-down rule invocation breadth-first:

– Active edge:
edge(0, 0, S → • NP VP)

– Rules:
NP → N; VP → V NP

– New edges:
edge(0, 0, NP → • N)

edge(0, 0, VP → • V NP)

© 2005 by Damir Ćavar 128

Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 0, NP → • N)

edge(0, 1, N → John •)
– Merge edges and add resulting edge to chart:

edge(0, 1, NP → N •)

© 2005 by Damir Ćavar 129

Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 0, S → • NP VP)

edge(0, 1, NP → N •)
– Merge edges and add resulting edge to chart:

edge(0, 1, S → NP • VP)

© 2005 by Damir Ćavar 130

Chart Parsing

• Rule Invocation:

– Dependent of parsing strategy.

• Fundamental Rule:

– Independent of parsing strategy.

© 2005 by Damir Ćavar 131

Chart Parsing

• Differences between top-down and bottom-up parsing:

– TD: Disambiguates by position.
∗ Calls from Alaska are expensive.

– BU: Lexically driven.
– TD: Has to handle recursion.

© 2005 by Damir Ćavar 132

Chart Parser Implementation

• Necessary components:

– Chart
– Initialization
– Rule Invocation
– Fundamental Rule
– Program Flow-Control

© 2005 by Damir Ćavar 133

Chart Parser Implementation

• Chart:

– Storage for edges
– Edges:
∗ start point
∗ end point
∗ rule
∗ dot position

© 2005 by Damir Ćavar 134

Chart Parser Implementation

• Edge:

– List of elements:
edge = [0, 1, 1, "N", "John"]

∗ integer for start point
∗ integer for end point
∗ integer for dot position
∗ string for rule left-hand side
∗ string for rule right-hand side

© 2005 by Damir Ćavar 135

Chart Parser Implementation

• Chart:

– Storage for edges
– List of edges:
∗ chart = [] or

chart = [[0, 1, 1, "N", "John"],

[1, 2, 1, "V", "kissed"],

[2, 3, 1, "N", "Mary"]]

© 2005 by Damir Ćavar 136

Chart Parser Implementation

• Define functions:

– Initialize: def initialize():

– Rule Invocation: def ruleInvocation():

– Fundamental Rule: def fundamentalRule():

– Parsing Loop: def parse():

© 2005 by Damir Ćavar 137

References

[Lutz(1996)] Mark Lutz. Programming Python. O’Reilly & Asso-
ciates, Inc., Bonn; Sebastopol, CA, 2nd, march 2001 edition,
1996. ISBN 0-596-00085-5.

[Lutz(1998)] Mark Lutz. Python Pocket Reference. O’Reilly &
Associates, Inc., Sebastopol, CA, third edition, february 2005
edition, 1998. ISBN 0-596-00940-2. URL http://www.oreilly.

com/catalog/pythonpr3/.

[Lutz and Ascher(1999)] Mark Lutz and David Ascher. Learning
Python. O’Reilly & Associates, Inc., Sebastopol, CA, 2nd,
2004 edition, 1999. ISBN 1-56592-464-9. URL http://www.

oreilly.com/catalog/lpython/.

© 2005 by Damir Ćavar 138

http://www.oreilly.com/catalog/pythonpr3/
http://www.oreilly.com/catalog/pythonpr3/
http://www.oreilly.com/catalog/lpython/
http://www.oreilly.com/catalog/lpython/

[Martelli(2003)] Alex Martelli. Python in a Nutshell. O’Reilly &
Associates, Inc., March 2003. ISBN 0-596-00188-6.

[Martelli and Ascher(2002)] Alex Martelli and David Ascher,
editors. Python Cookbook. O’Reilly & Associ-
ates, Inc., Sebastopol, CA, 2002. ISBN 0-596-00167-
3. URL http://safari.oreilly.com/0596001673;http://www.

oreilly.com/catalog/pythoncook.

© 2005 by Damir Ćavar 139

http://safari.oreilly.com/0596001673; http://www.oreilly.com/catalog/pythoncook
http://safari.oreilly.com/0596001673; http://www.oreilly.com/catalog/pythoncook

	Agenda
	Introduction to Python
	Introduction to Python
	Parsing
	Statistics
	Clustering
	Obtaining Python
	Readings
	Readings
	Extensions
	Summary
	Starting Python
	Command line
	Interaction
	Interaction
	Calculating with Python
	Variables
	Integers
	Floating point numbers
	Numeric Operations
	Strings
	String Variables
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Types
	String Types
	String Operations
	Sequence Operations
	Sequence Methods
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	List Operations
	Tuples
	Tuples
	Dictionaries
	Dictionaries
	Dictionaries
	Dictionaries
	Flow Control
	Conditions
	Conditions
	Conditions
	Conditions
	Conditions
	Loops
	Loops
	Loops over Sequences
	Loops over Sequences
	Loops over Sequences
	Loops over Sequences
	Functions
	Return Values of Functions
	Functions and Modules
	Functions and Modules
	Functions and Modules
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Exceptions
	Exceptions
	Comments
	Documentation
	Documentation
	Classes
	Grammar Parsing

