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Introduction to Python

• Installing and running Python

• Variables

– Integers, Floats, Strings, Lists, Tuples, Dictionaries

• Arithmetic Expressions

• Flow control

– Conditions
– Loops
– Functions
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Introduction to Python

• Modules

• Classes

• Input and Output

• Exceptions
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Parsing

• Parsing a grammar (CFG)

• Simple top-down parsing

• Simple bottom-up parsing

• Chart parsing
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Statistics

• Counting characters, words

• Creating frequency profiles, maximum likelihood

• N-gram models

• Language Identification

• Calculating Information theoretic measures (Entropy, Mutual In-
formation, Relative Entropy)
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Clustering

• K-means document

• Expectation maximization
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Obtaining Python

• Development environment:

– Python is Free and Open
– It comes with most systems: FreeBSD, Linux, and Mac OSX
– It can be installed on any OS, e. g. Microsoft Windows:
∗ Python.org
∗ ActiveState.com
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http://www.freebsd.org/
http://www.apple.com/macosx/
http://www.python.org/
http://www.activestate.com/


Readings

• Free online recourses

– Python.org
– Dive into Python
– Thinking in Python
– A Byte of Python
– How to think like a computer scientist
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http://www.python.org/doc/
http://diveintopython.org/
http://www.mindview.net/Books/TIPython
http://www.dpawson.co.uk/bop/
http://www.ibiblio.org/obp/thinkCSpy/


Readings

• Books

– Programming Python [Lutz(1996)]
– Learning Python [Lutz and Ascher(1999)]
– Python in a Nutshell [Martelli(2003)]
– Python Cookbook [Martelli and Ascher(2002)]
– Python Pocket Reference [Lutz(1998)]
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http://www.oreilly.com/catalog/python2/
http://www.oreilly.com/catalog/lpython2/
http://www.oreilly.com/catalog/pythonian/
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://www.oreilly.com/catalog/pythonpr3/


Extensions

• Natural Language Toolkit (NLTK)

• Numerical Python

• SciPy – Scientific tools for Python

• Bob Ippolito’s Python Stuff

• Vaults of Parnassus: Python Resources

• Mark Hammond’s free stuff
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http://nltk.sourceforge.net/
http://numeric.scipy.org/
http://www.scipy.org/
http://undefined.org/python/
http://py.vaults.ca/parnassus/apyllo.py/
http://starship.python.net/crew/mhammond/


Summary

• Python V. 2.4.1

– High-level open and free programming language
– System independent
– Practical relevance (.NET, MONO & WebServices)
– Rich toolset, NLP toolkits
– Object oriented, functional, list processing, scripting, Unicode

& XML support, low turnaround times
– GUI: Qt, Tcl/Tk, GTK, Java, Aqua, etc.
– Integrated in application (e. g. Vim)
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http://www.microsoft.com/net/default.mspx
http://www.mono-project.com/Main_Page
http://www.webservices.org/
http://www.trolltech.com/products/qt/index.html
http://www.tcl.tk/
http://www.gtk.org/
http://java.sun.com/
http://www.vim.org/


Starting Python

• Command line or IDE (or double click on Python script)

• Command line:

Damirs:~ dcavar$ python

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)

[GCC 3.3 20030304 (Apple Computer, Inc. build 1666)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>
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Command line

• Exit the interactive Python interpreter:

– Unix: Ctrl-D

– Windows: Ctrl-Z

– Commands:

>>> raise SystemExit

or

>>> import sys

>>> sys.exit()
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Interaction

• Hello-world example:

>>> print "Hello world!"

Hello world!

>>>

• helloworld.py from within the interactive Python interpreter:

>>> execfile("helloworld.py")

Hello world!

>>>
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Interaction

• Via command-line and file: helloworld.py

Damirs:~ dcavar$ python helloworld.py

Hello world!

Damirs:~ dcavar$

• and remaining in interactive mode after execution:

Damirs:~ dcavar$ python -i helloworld.py

Hello world!

>>>
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Calculating with Python

>>> 5 + 4

9

>>> 5 * 3

15

>>> 6 / 2

3

>>> 7 - 3

4

>>> (4 - 2) * 5

10

>>> 4 - 2 * 5

-6
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Variables

• Dynamically typed

– Types do not have to be declared in the program.
– Types of variables can change during program flow, i. e. in-

tegers can become strings or lists and vice versa.

• Garbage collection

– No allocation and memory handling for variables and their con-
tent from the programmers perspective.
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Integers

• Example: integers and simple arithmetic

>>> myValue = 9

>>> newValue = myValue - 4

>>> myValue

9

>>> newValue

5

>>>
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Floating point numbers

• Example: floats and integers and simple arithmetic

>>> myValue = 9.0

>>> newValue = myValue + 4

>>> myValue

9.0

>>> newValue

13.0

>>>
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Numeric Operations

Operation Result

x + y sum of x and y

x − y difference of x and y

x * y product of x and y

x / y quotient of x and y

x % y remainder of x / y

−x x negated

+x x unchanged

abs(x) absolute value or magnitude of x

int(x) x converted to integer

long(x) x converted to long integer

float(x) x converted to floating point

complex(re,im) a complex number with real part re,
imaginary part im. im defaults to zero.

c.conjugate() conjugate of the complex number c

divmod(x, y) the pair (x / y, x % y)

pow(x, y) x to the power y

x ** y x to the power y
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Strings

• Quoting strings:

"This is an example."

’This is an example.’

• Escape character for quotes in string:

"John said: \"Hello.\""

• or simply different quotes:

’John said: "Hello."’
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String Variables

>>> text = "Hello world!"

>>> text

’Hello world!’

>>>

• text is a placeholder for, or name of the string "Hello world!"

• text refers or points to the string "Hello world!", which is auto-
matically allocated and stored in memory, and freed after no
longer in use.
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String Operations

• Concatenation:

>>> text = "Hello world!"

>>> text = text + " How are you?"

>>> text

’Hello world! How are you?’

>>> other = " OK!"

>>> text = text + other

>>> text

’Hello world! How are you? OK!’
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String Operations

• Multiplication:

>>> text = 2 * text

>>> text

’Hello world! How are you? OK!Hello world! How are you? OK!’

>>> text = "Hello world!"

>>> text = 5 * " " + text + 5 * " "

>>> text

’ Hello world! ’
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String Operations

• Accessing characters by position:

>>> text = "Hello world!"

>>> text[0]

’H’

>>> text[1]

’e’

>>> text[12]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range
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String Operations

• Accessing characters by position backwards:

>>> text[-1]

’!’

>>> text[-2]

’d’

>>> text[-13]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range
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String Operations

• Accessing characters by position backwards:

>>> text[-1]

’!’

>>> text[-2]

’d’

>>> text[-13]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range
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String Operations

• Slicing:

>>> text[0:3]

’Hel’

>>> text[0:1]

’H’

>>> text[:-1]

’Hello world’

>>> text[1:]

’ello world!’

>>> text[:]

’Hello world!’
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String Operations

• Assigning to indexed or sliced position:

>>> text[1] = "a"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

>>> text[1:2] = "a"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn’t support slice assignment
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String Operations

• Setting indexed or sliced position:

>>> text = text[0] + "a" + text[2:]

>>> text

’Hallo world!’

>>> text = text[:1] + "e" + text[2:]

>>> text

’Hello world!’

>>> text = text[:2] + text[3:]

>>> text

’Helo world!’
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String Operations

• Notes:

– Forward indexing starts with 0

– Backward indexing starts with -1

– Index out of range exception occurs if index out of bounds
– text is equivalent to text[:]

– Assignment of values to indexed positions or slices is not pos-
sible with string types, i. e. strings are immutable objects.

– Changing strings implies internal reallocation of a new string
variable, thus expensive memory operations.
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String Operations

• Performance issues with string concatenation:

– In potentially long loops with concatenation operations, in-
stead of:
text = text[:1] + "e" + text[2:]

– use:
text = "".join([text[:1], "e", text[2:]])

© 2005 by Damir Ćavar 32



String Operations

• Integers or floats to strings:

>>> a = 0.9

>>> str(a)

’0.9’

>>> b = 5

>>> str(b)

’5’

>>> text = text + " " + str(a) + " " + str(b)

>>> text

’Halo world! 0.9 5’
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String Operations

• Integers or floats to strings:

>>> text = text + a + b

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: cannot concatenate ’str’ and ’float’ objects

>>> repr(a)

’0.90000000000000002’

>>> repr(b)

’5’
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String Types

• Escape sequences in strings:

– Newline ("\n") raw and interpreted:

>>> text = "Line 1\nLine 2"

>>> print text

Line 1

Line 2

>>> text = r"Line 1\nLine 2"

>>> print text

Line 1\nLine 2
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String Types

• Unicode strings:

– Default: all strings are based on (8–bit) 128 ASCII encoded
characters, to change the default, start Python with the option
−U:
Damirs:∼dcavar$ python −U

– Prepend Unicode strings with:
∗ escape sequences interpreted: u"text"

∗ raw unicode strings: ur"text"

– Specific encoding: u"text".encode(’utf-8’)

– Convert from one encoding to another:
unicode(text, ’utf-8’)
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http://www.unicode.org/
http://www.unicode.org/


String Operations

• Strings are sequence types:

– sequences of characters (single byte or multi-byte characters)
– all sequence types can be subject of sequence operations
∗ indexing & slicing
∗ membership
∗ concatenation & shallow multiplication
∗ length
∗ min & max value
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Sequence Operations

Operation Result

x in s True if an item of s is equal to x, else False

x not in s False if an item of s is equal to x, else True

s + t the concatenation of s and t

s * n , n * s n shallow copies of s concatenated
s[i] i’th item of s, origin 0

s[i:j] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

max(s) largest item of s
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Sequence Methods

• Some selection:

capitalize()

find(sub[, start[, end]]), rfind(sub [,start [,end]])

index(sub[, start[, end]]), rindex(sub[, start[, end]])

lower(), upper()

strip([chars]), lstrip([chars]), rstrip([chars])

replace(old, new[, count])

split([sep [,maxsplit]])

startswith(prefix[, start[, end]]) endswith(suffix[, start[, end]])

>>> text.split()

[’Line’, ’1\nLine’, ’2’]
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Lists

• Mutable objects

• Sequence types, with any data type in any combination as ele-
ments:

>>> text.split()

[’Line’, ’1\nLine’, ’2’]

>>> e = [ "test", 56, 6.0, [ "probe", 6 ], 7 ]

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> len(e)

5
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Lists

• Index and slice access:

– index returns an element
– slice returns a list

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> e[0]

’test’

>>> e[1:2]

[56]

>>> e[0:2]

[’test’, 56]

© 2005 by Damir Ćavar 41



Lists

• Lists are mutable:

– index or slice access to change elements is possible

>>> e

[’test’, 56, 6.0, [’probe’, 6], 7]

>>> e[3] = 45

>>> e

[’test’, 56, 6.0, 45, 7]

>>> e[2:4] = [ 3, 5 ]

>>> e

[’test’, 56, 3, 5, 7]
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Lists

• Care with variable names and assignments:

– assigning a list variable to another variable does not copy the
list!

>>> f = e

>>> f

[’test’, 56, 3, 5, 7]

>>> f[3] = 0.4

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]
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Lists

• Care with variable names and assignments:

– copy of lists assigned to another variable

>>> f = e[:]

>>> f

[’test’, 56, 3, 0.40000000000000002, 7]

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]

>>> f[3] = 3

>>> f

[’test’, 56, 3, 3, 7]

>>> e

[’test’, 56, 3, 0.40000000000000002, 7]
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Lists

• Detailed control over cloning objects (e. g. lists):

– copy module: copy and deepcopy

>>> import copy

>>> f = copy.copy(e) # shallow copy

>>> f = copy.deepcopy(e) # recursive deep copy

>>>
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Lists

• Concatenation and multiplication of lists:

>>> f

[’test’, 56, 3, 456, 3, 7]

>>> f = 2 * f

>>> f

[’test’, 56, 3, 456, 3, 7, ’test’, 56, 3, 456, 3, 7]

>>> f = f + [ 34]

>>> f

[’test’, 56, 3, 456, 3, 7, ’test’, 56, 3, 456, 3, 7, 34]
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List Operations

Operation Result

s[i] = x item i of s is replaced by x

s[i:j] = t slice of s from i to j is replaced by t

del s[i:j] same as s[i:j] = []

s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t

del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) same as s[len(s):len(s)] = [x]

s.extend(x) same as s[len(s):len(s)] = x

s.count(x) return number of i’s for which s[i] == x

s.index(x[, i[, j]]) return smallest k such that s[k] == x and i <= k < j

s.insert(i, x) same as s[i:i] = [x]

s.pop([i]) same as x = s[i]; del s[i]; return x

s.remove(x) same as del s[s.index(x)]

s.reverse() reverses the items of s in place
s.sort([cmp[, key[, reverse]]]) sort the items of s in place
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Tuples

• Immutable ordered sequences:

– Usually more efficient than list objects

>>> e = ( 1, "test", 7.0, ( 3, 5 ), [ 6, 2, "probe" ] )

>>> e

(1, ’test’, 7.0, (3, 5), [6, 2, ’probe’])

>>> e[3]

(3, 5)

>>> e[3:]

((3, 5), [6, 2, ’probe’])
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Tuples

• Elements in tuples can be mutable:

>>> e

(1, ’test’, 7.0, (3, 5), [6, 2, ’probe’])

>>> e[4][0] = 5

>>> e

(1, ’test’, 7.0, (3, 5), [5, 2, ’probe’])

>>> e[3][1] = 4

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment
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Dictionaries

• Data structures for key-value pairs (Hash-tables):

– Fast access to large data collections based on keys and values.
– A dictionary is an unordered collection of key-value pairs.
– There can only be one key with one corresponding value in

one dictionary!
– Valid keys can only be immutable objects!
– Typical CL application is dictionaries, frequency tables, n-gram

models, rule sets, etc.
– This is one of the most important data structures in the fol-

lowing!
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Dictionaries

• Using dictionaries:

>>> e = { "key1":"value1", "key2":[ 1, 2 ], "key3":34 }

>>> e

{’key3’: 34, ’key2’: [1, 2], ’key1’: ’value1’}

>>> e["key4"] = 34

>>> e["key2"] = 23

>>> e

{’key3’: 34, ’key2’: 23, ’key1’: ’value1’, ’key4’: 34}

>>> e["key1"]

’value1’
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Dictionaries

• Accessing and checking for keys:

>>> e.keys()

[’key3’, ’key2’, ’key1’, ’key4’]

>>> e.has_key("key1")

True

>>> e.has_key("key65")

False

>>> e["key65"]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

KeyError: ’key65’
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Dictionaries

• Key and value types:

>>> e[1] = 34

>>> e["house"] = "Haus"

>>> e["house"] = [ "N", "Haus" ]

>>> e["house"] = ( "N", "Haus" )

>>> e[ ( 1, 2 ) ] = 87

>>> e[ [ 1, 2 ] ] = 96

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable
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Flow Control

• Conditions

• Loops

• Functions
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Conditions

• Conditional execution of code blocks (True/False, certain values)

– Indention-based code blocks (either space- or tab-marked)
– Lines belonging to one code block have the same amount of

space- or tab-characters in the beginning of the line.

>>> if 1 > 0:

... print "Hello!"

... else:

... print "Hallo!"

...

Hello!
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Conditions

• Testing conditions with: <, >, >=, <=, ==, !=, and, or, not

if i > 0:

print "i is positive"

elif i == 0:

print "i equals 0"

else:

print "i is negative"

if "a" not in [ "test", "b", "c" ]:

pass

else:

print "a"
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Conditions

• Testing for an element in a sequence:
if x in y

or
if x not in y

– y can be a string, tuple, list

• Empty code blocks: pass
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Conditions

• Testing over variable values and content: integers
(if value is 0, return False, else return True)

>>> a = 5

>>> if a:

... print "test"

...

test

>>> a = 0

>>> if a:

... print "test"

...

>>>
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Conditions

• Testing over variable values and content: strings
(if string is empty, return False, else return True)

>>> a = "Hello"

>>> if a:

... print "test"

...

test

>>> a = ""

>>> if a:

... print "test"

...

>>>
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Loops

• Looping over values:

>>> a = 5

>>> while a > 0:

... print "a =", a

... a = a - 1

...

a = 5

a = 4

a = 3

a = 2

a = 1

>>>

© 2005 by Damir Ćavar 60



Loops

• Looping over values with internal break condition:

>>> a = 5

>>> while True:

... print "a =", a

... a -= 1

... if a == 0:

... break

...

a = 5

a = 4

a = 3

a = 2

a = 1
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Loops over Sequences

• Sequential sequence processing:

>>> a = [ "a", "b", "c" ]

>>> for i in a:

... print i

...

a

b

c
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Loops over Sequences

• Inefficient sequential sequence processing:

>>> a = [ 1, 2, 3 ]

>>> b = []

>>> for i in a:

... b.append(float(i))

...

>>> b

[1.0, 2.0, 3.0]
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Loops over Sequences

• More efficient: list comprehension

– Loop over all list elements, apply a function to each of them,
and return a list with the resulting values.

– This is the fastest an most efficient solution in Python!

>>> a = [ 1, 2, 3 ]

>>> b = [ float(i) for i in a ]

>>> b

[1.0, 2.0, 3.0]
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Loops over Sequences

• Index based loop: range(n)

– Returns as default a list of numbers from 0 till n-1
– Looping over the index positions of a list via range(len(text))

– Necessary to access elements from sequences (lists, tuples,
strings) by position
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Functions

• Functions and recursion:

>>> def fact(num):

... if num == 1:

... return 1

... else:

... return num * fact(num - 1)

...

>>> fact (3)

6

>>> fact(6)

720
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Return Values of Functions

• Unpacking of function return values:

>>> def convert(text):

... return text, text.lower(), text.upper()

...

>>> convert("Hello")

(’Hello’, ’hello’, ’HELLO’)

>>> a, b, c = convert("Hello")

>>> a

’Hello’

>>> b

’hello’

>>> c

’HELLO’
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Functions and Modules

• Functions stored in Python code files

– Reuse of functions via import in Python programs
– Naming conventions! Example: string

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’]

>>> import string

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’string’]

>>> dir(string)

[’Template’, ’_TemplateMetaclass’, ’__builtins__’, ’__doc__’, (...)

’center’, ’count’, ’digits’, ’expandtabs’, ’find’, ’hexdigits’, (...)]
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Functions and Modules

• Using imported functions: module-name.function-name

>>> import string

>>> string.split("Hello world!")

[’Hello’, ’world!’]

>>> import math

>>> math.log(2)

0.69314718055994529

>>> math.log(1)

0.0
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Functions and Modules

• Importing only specific functions:
from module import function

>>> from math import log

>>> log(2)

0.69314718055994529

>>> log(1)

0.0
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Input and Output

• Reading data from files: python readfile.py

file = open("readfile.py")

text = file.read()

file.close()

print text
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Input and Output

• Reading data from files line by line: python readfilel.py

file = open("readfilel.py")

text = file.readlines()

file.close()

for i in text:

print i,
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Input and Output

• Reading data from files line by line and processing each line
immediately:
python readfilelp.py

file = open("readfilelp.py", "r")

line = file.readline()

while line:

print line,

line = file.readline()

file.close()
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Input and Output

• Compact reading of data from file: python readfilec.py

print = open("readfilec.py").read()
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Input and Output

• Writing data to file: python writefile.py

text = "This is a test."

file = open("test.txt", "w")

file.write(text)

file.close()
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Input and Output

• Appending data to a file (creating it, if it doesn’t exist):
python writefile.py

text = "This is a test."

file = open("test.txt", "a")

file.write(text)

file.close()
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Input and Output

• Writing Unicode (UTF-8) text data to a file:
python writefileHR.py

text = u"Pokušati ćemo pisati hrvatski tekst."

file = open("test.txt", "w")

file.write(text)

file.close()

Damirs:~/Code dcavar$ python writefileHR.py

sys:1: DeprecationWarning: Non-ASCII character ’\xc5’ in file writefileHR.py on line 1, but no encoding declared; see http://www.python.org/peps/pep-0263.html for details

Traceback (most recent call last):

File "writefileHR.py", line 3, in ?

file.write(text)

UnicodeEncodeError: ’ascii’ codec can’t encode characters in position 4-5: ordinal not in range(128)
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Input and Output

• Writing Unicode (UTF-8) text data to a file:
python writefileHR1.py

# -*- coding: utf8 -*-

import codecs

text = u"Pokušati ćemo pisati hrvatski tekst."

file = codecs.open("test.txt", "w", "utf8")

file.write(text)

file.close()
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Exceptions

• Various functions throw exceptions:
python readfileN.py

file = open("some.txt")

text = file.read()

file.close()

print text

Traceback (most recent call last):

File "readfileN.py", line 1, in ?

file = open("some.txt")

IOError: [Errno 2] No such file or directory: ’some.txt’
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Exceptions

• Various functions throw exceptions:
python readfileNE.py

try:

file = open("some.txt")

text = file.read()

file.close()

except IOError:

print "Cannot open file some.txt."

else:

print text
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Comments

• Comments in the code:

# reading in the data

#

file = open("some.txt")

# text = file.read()

file.close()
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Documentation

• Every file, function, or class can be documented:

"""

File: test.py

Author: Damir Cavar

Date: 05-09-20

Purpose: Showing Python documentation features.

"""

def test(text):

"""Testing the print features.

Parameter: text, a string containing the text to be printed."""

print text
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Documentation

• Generating documentation documents with pydoc:

– Help on pydoc on the web and by starting pydoc without para-
meters in the command-line shell:
Damirs: / dcavar$ pydoc

Damirs:~/ dcavar$ pydoc -w ./test.py

wrote test.html
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Classes

• Object oriented encapsulation of data and functions:

– specific data structures
– specific methods to manipulate the encapsulated data
– modularity and reusability, complexity etc.
– Example:
∗ Phrase structure rules of the type: NP -> DET N

∗ Structure: left-hand side, arrow, right-hand side
∗ LHS: only one symbol
∗ RHS: any number of symbols
∗ Symbols: any combination of non-whitespace characters
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Grammar Parsing

• Reading a grammar from a file into a data-structure:

– opening a file
– reading in line by line
– skipping comment lines or empty lines
– splitting lines with rules into LHS and RHS
– storing LHS with its corresponding RHS
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Grammar Parsing

• Grammar parser:

– example grammar: grammar.txt

– writing grammar parser...
– see grammar.py
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Grammar Parsing

• Conceptual questions:

– What will be the use of the code?
∗ Who will use it how for what purpose?

– What data structures do we need?
∗ Determine all the major storage variables.

– What shall we be able to do with the data structure?
∗ Determine the major functions to process, access, change,

use the internal data structures.
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Parsing and Phrase Structure Grammar

• Top-down parsing:

– Replace goal symbol with symbols and symbols with terminals
until the terminals match.

• Bottom-up parsing:

– Replace terminals with symbols and symbols with symbols until
the goal symbol is reached.
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Parsing

• Parsing strategies:

– Top-down parsing
– Bottom-up parsing

• Processing strategies:

– Breadth first
– Depth first
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Parsing

• What problems do different strategies have?

– Recursion
– Multiple choices
∗ Backtracking
∗ Agenda
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Parsing

• Implementation: (TDAParser.py)

– Top-down with weak generative capacity:
∗ Input 1: tokenized sentence
∗ Input 2: grammar and goal-symbol
∗ Output: yes/no or successful/failed parse
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Chart Parser Implementation

• Main part:

– Program initialization vs. module import:

if __name__ == "__main__":

parse(["John", "kissed", "Mary"])
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Parsing

• Top-down implementation:

– Input 1: tokenized sentence
– Input 2: goal-symbol
∗ Assume two lists: Input1 and Input2
∗ Success: replace symbols in Input2 until Input1 equals Input2
∗ Failure: no replacement possible, Input1 does not equal In-

put2
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Parsing

• Top-down implementation:

– see code example in ZIP file TDA1.zip:
1. TDAParser.py
2. grammar.txt
3. grammar.py
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Parsing Strategy

• Two lists:

– Input list: [ ’John’, ’kissed’, ’Mary’ ]

– Parse list: [ ’S’ ]

• If lists are equal after applying replacement on the Parse list, the
parse is successful.

© 2005 by Damir Ćavar 95



Parsing Strategy

• Reduce lists every time there is a partial match:

– Input list: [ ’John’, ’kissed’, ’Mary’ ] → [ ’kissed’, ’Mary’ ]

– Parse list: [ ’John’, ’VP’ ] → [ ’VP’ ]

• Intuition: there is a parse for the sentence if
[ ’kissed’, ’Mary’ ] can be derived from [ ’VP’ ]

• Continue parsing with the reduced lists
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Parsing Strategy

• Conditions:

– Parsing is successful if we end up with:
∗ Input list = [ ]
∗ Parsing list = [ ]

– Parsing fails if:
∗ One list is empty and the other not
∗ Both lists are not empty and there is no possibility to reduce

them or apply further replacement
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Parsing Strategy

• Improvement of the parsers:

– Ordering of rules: more common rules first
∗ Try manipulating the order of rules in the grammar, e. g. the

VP rules with transitive or intransitive VPs
– Number of symbols in RHS cannot be bigger than number of

symbols and/or terminals in the input
– Tagging the input first
– Depth-first rather than breadth-first with respect to the

agenda
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Parsing Strategy

• Improvement of parser:

– Tagging the input first
– Depth-first rather than breadth-first with respect to the

agenda
– Recursive function calls vs. loop
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Parsing Strategy

• Bottom-up parsing:

– Replace the input tokens until the input list consists of the
goal symbol only.

– Example implementation: loop and not recursive function call
∗ Advantage: no stack-overflow with long input sentences.

– Example: BUAParser.py

© 2005 by Damir Ćavar 100



Parsing Strategy

• Problems:

– Dependencies between tokens in the clause
∗ agreement, binding, negative polarity and other particles,

idioms, anaphoric relations, periphrastic constructions etc.
– Structures depend on the properties of tokens and vice versa
∗ transitivity of verbs, selectional properties

© 2005 by Damir Ćavar 101



Parsing Strategy

• Problems:

– Grammars
∗ recursion: unlimited number of elements on the agenda?
∗ empty elements or traces
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Parsing Strategy

• Problems observed:

– Reanalysis of already analyzed constituents
– Search through all grammar rules

• Solution:

– Memorize analyzed constituents
– Choose appropriate rules
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Parsing Strategy

• Solution:

– Chart Parsing
∗ Chart as memory
∗ Selection of relevant rules from grammar
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Chart Parsing

• Chart:

– Storage for complete and incomplete constituents
– Edges
∗ Dotted rule
∗ Index
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Chart Parsing

• Chart:

– Storage for complete and incomplete constituents
– Edges
∗ Dotted rule: VP → V • NP
∗ Index:
· Left and right position of the edge span
· Position of the dot in the RHS
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Chart Parsing

• Edges:

– Dotted rule: VP → V • NP

How much of the input at which position matches which part
of the RHS of the rule?

– Example:
∗ Input: [ "John", "loves", "Mary" ]

∗ Edge: ((1, 2, 1, V → loves •))
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Chart Parsing

• Edges:

– Inactive edge: (1, 2, 1, V → loves •)
∗ Complete constituent

– Active edge: (1, 2, 1, VP → V • NP)

∗ Incomplete constituent
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Chart Parsing

• Adding edges to chart:

– Initialization
∗ Bottom-up strategy: For every token add an inactive edge

to chart
edge(0, 1, 1, N → John •)
edge(1, 2, 1, V → kissed •)
edge(2, 3, 1, N → Mary •)

– Rule invocation: Matching edges with rules
– Fundamental rule: Matching active and inactive edges on

the chart
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Chart Parsing

• Initialization:

– Top-down strategy:
– For every token add an inactive edge to chart.
– For every rule with start-symbol in LHS add active edge to

chart:
∗ edge(0, 1, 0, S → • NP VP)
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Chart Parsing

• Rule Invocation:

– Bottom-up strategy:
– For every inactive edge on chart:
∗ Find rules that have its LHS on their left periphery in RHS
∗ Create new edges and add to chart.

– Example:
∗ Inactive edge: edge(0, 1, 1, N → John •)
∗ Rule: NP → N

∗ New edge: edge(0, 0, 0, NP → • N)
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Chart Parsing

• Fundamental Rule:

– Move inactive edge from agenda to chart
– For inactive edge find edge that expects it
∗ edge(0, 1, 1, NP → N •)
∗ edge(0, 0, 0, S → • NP VP)

– Add resulting edge to agenda:
∗ edge(0, 1, 1, S → NP • VP)
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Chart Parsing

• Bottom-up:

1: Initialize agenda

2: Repeat until edges in agenda

Process first edge on agenda

If edge inactive:

move inactive edge to chart

Function RuleInvocation

Function FundamentalRule

• Result:
If chart contains over-spanning edges, these represent possible parses of the

input.
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Chart Parsing

• Process example:

– Grammar: grammar.txt

– Implementation: Charty.py
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Chart Parsing

• Step by step:

– Initialize chart with the next word of the utterance, i. e. create
edge with the lexical rule

– Find rules in the grammar that consume the symbol of the
inactive edges on the chart, i. e. extend the chart with edges
that have LHS-symbols of inactive edges at the left periphery
of their RHS

– Create new edges by combining active with inactive edges:
∗ end-symbol of one is beginning of other
∗ expectation symbol of active edge corresponds to LHS of

inactive edge
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Chart Parsing

• Motivation:

– Problems with backtracking (our brute-force) parsers:
∗ Repetitive parsing of same token(list)s
∗ Repetitive parsing of paths that turned out to be unsuccess-

ful
∗ Unknown words and partial structures lead to a failure

– Chart parser (e. g. Earley parser):
∗ Avoid parsing of same token(list)s by memorization in chart
∗ Memorize parses for partial structures
· If a spanning analysis is impossible, the chart contains the
partial analyses
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Chart Parsing

• Motivation:

– Chart parser (e. g. Earley parser):
∗ Compact representation for ambiguous structures (multiple

parses)
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Chart Parsing

• Edges:

– Directed graph: start point, end point, analysis
– Input: [ "John", "kissed", "Mary" ]

– Final chart:
(0, 1, N, [ John • ]) (0, 1, NP, [ N • ])
(1, 2, V, [ kissed • ]) (2, 3, NP, [ N • ])
(2, 3, N, [ Mary • ]) (1, 3, VP, [ V NP • ])
(0, 3, S, [ NP VP • ])
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Chart Parsing

• Bottom-up strategy:

– Initialization (scan, tagging)
∗ Add edges with lexical rules for each token (incrementally)

– Rule invocation (prediction)
– Fundamental rule (completion)
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Chart Parsing

• Bottom-up strategy:

– Rule Invocation:
For every inactive edge on chart:
∗ Find rules that have its LHS on their left periphery in RHS.
∗ Create new edges and add to chart.
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Chart Parsing

• Bottom-up rule invocation example:

– Inactive edge:
edge(0, 1, N → John •)

– Rule:
NP → N

– New edge:
edge(0, 0, NP → • N)
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Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 1, N → John •)
edge(0, 0, NP → • N)

– Merge edges and add resulting edge to chart:
edge(0, 1, NP → N •)
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Chart Parsing

• Top-down strategy:

– Initialization
∗ Add edges with rules with goal symbol on LHS (increment-

ally)
– Rule invocation (prediction)
– Fundamental rule (completion)
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Chart Parsing

• Top-down strategy:

– Rule Invocation:
For every active edge on chart:
∗ Find rules that have its left peripheral symbol from the ex-

pected RHS on their LHS. The left peripheral symbol from
the expected RHS is the first symbol following the DOT.

∗ Create new edges and add to chart.
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Chart Parsing

• Top-down rule invocation example:

– Active edge:
edge(0, 0, S → • NP VP)

– Rule:
NP → N

– New edge:
edge(0, 0, NP → • N)
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Chart Parsing

• Top-down rule invocation depth-first:

– Active edge:
edge(0, 0, S → • NP VP)

– Rules:
NP → N;
N → John

– New edges:
edge(0, 0, NP → • N)

edge(0, 0, N → • John)
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Chart Parsing

• Top-down after rule invocation and fundamental rule:

– New edges:
edge(0, 1, S → NP • VP)

edge(0, 1, NP → N •)
edge(0, 1, N → John •)
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Chart Parsing

• Top-down rule invocation breadth-first:

– Active edge:
edge(0, 0, S → • NP VP)

– Rules:
NP → N; VP → V NP

– New edges:
edge(0, 0, NP → • N)

edge(0, 0, VP → • V NP)
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Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 0, NP → • N)

edge(0, 1, N → John •)
– Merge edges and add resulting edge to chart:

edge(0, 1, NP → N •)
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Chart Parsing

• Fundamental Rule:

– For every active edge find expected inactive edge:
edge(0, 0, S → • NP VP)

edge(0, 1, NP → N •)
– Merge edges and add resulting edge to chart:

edge(0, 1, S → NP • VP)
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Chart Parsing

• Rule Invocation:

– Dependent of parsing strategy.

• Fundamental Rule:

– Independent of parsing strategy.
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Chart Parsing

• Differences between top-down and bottom-up parsing:

– TD: Disambiguates by position.
∗ Calls from Alaska are expensive.

– BU: Lexically driven.
– TD: Has to handle recursion.
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Chart Parser Implementation

• Necessary components:

– Chart
– Initialization
– Rule Invocation
– Fundamental Rule
– Program Flow-Control
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Chart Parser Implementation

• Chart:

– Storage for edges
– Edges:
∗ start point
∗ end point
∗ rule
∗ dot position
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Chart Parser Implementation

• Edge:

– List of elements:
edge = [ 0, 1, 1, "N", "John" ]

∗ integer for start point
∗ integer for end point
∗ integer for dot position
∗ string for rule left-hand side
∗ string for rule right-hand side
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Chart Parser Implementation

• Chart:

– Storage for edges
– List of edges:
∗ chart = [ ] or

chart = [ [ 0, 1, 1, "N", "John" ],

[ 1, 2, 1, "V", "kissed" ],

[ 2, 3, 1, "N", "Mary" ] ]
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Chart Parser Implementation

• Define functions:

– Initialize: def initialize():

– Rule Invocation: def ruleInvocation():

– Fundamental Rule: def fundamentalRule():

– Parsing Loop: def parse():

© 2005 by Damir Ćavar 137
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http://safari.oreilly.com/0596001673; http://www.oreilly.com/catalog/pythoncook
http://safari.oreilly.com/0596001673; http://www.oreilly.com/catalog/pythoncook

	Agenda
	Introduction to Python
	Introduction to Python
	Parsing
	Statistics
	Clustering
	Obtaining Python
	Readings
	Readings
	Extensions
	Summary
	Starting Python
	Command line
	Interaction
	Interaction
	Calculating with Python
	Variables
	Integers
	Floating point numbers
	Numeric Operations
	Strings
	String Variables
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Types
	String Types
	String Operations
	Sequence Operations
	Sequence Methods
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	List Operations
	Tuples
	Tuples
	Dictionaries
	Dictionaries
	Dictionaries
	Dictionaries
	Flow Control
	Conditions
	Conditions
	Conditions
	Conditions
	Conditions
	Loops
	Loops
	Loops over Sequences
	Loops over Sequences
	Loops over Sequences
	Loops over Sequences
	Functions
	Return Values of Functions
	Functions and Modules
	Functions and Modules
	Functions and Modules
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Input and Output
	Exceptions
	Exceptions
	Comments
	Documentation
	Documentation
	Classes
	Grammar Parsing

