Interoperability and Rapid Bootstrapping of Morphological Parsing and
Annotation Automatal

Damir Cavar,' Ivo-Pavao Jazbec,’ SiniSa Runjai¢?

"University of Zadar
Linguistics Department
Obala kralja Petra KreSimira I'V. 2, 23000 Zadar, Croatia
dcavar@unizd.hr

2Institute of Croatian Language and Linguistics
Ul Republike Austrije 16, 10000 Zagreb, Croatia
{ipjazbec,srunjaic} @ihjj.hr

Abstract
We discuss the design and development of a finite state transducer for morphological segmentation, annotation, and lemmatization
that allows for merging of three major functionalities into one high-performance monolithic automaton. It is designed to be flexible,
extensible, and applicable to any language that allows for purely morphotactic modeling on the lexical level of morphological structure.
The annotation schema used in an initial Croatian language model is a direct mapping from the GOLD ontology of linguistic concepts
and features, which increases the potential for interoperability, but also opens up advanced possibilities for a DL-based post-processing.

1. Introduction

Quantitative and qualitative information about morpho-

drink (up)”).

logical properties of languages is hard to come by. For token | popijemo

many languages information as for example contained in po pije mo
CELEX (Burnage, 1990) is not available. For many re- stem suffix
search questions, most of the available information about parse prefix root inflectional
distributional properties of morphemes and their feature aspect verb 1%t
makeup is not sufficient. perfective transitive plural

Corpus annotations tend to be lexeme and word-form
oriented, providing part-of-speech (PoS) tags for tokens in
the corpus, rather than segmentation of word-forms into
morphemes and allomorphs with their particular feature
annotation. The notion of morphological information is
used inconsistently in the literature, e.g. associated with
lexeme and PoS information only. The documented Croa-
tian morphological lexicon (Oliver and Tadi¢, 2004) for
example does not provide information about the morpho-
logical structure and specific feature annotations of single
morphemes, but rather word-forms and lexemes with PoS-
annotation.

On the other hand, specific research questions, require
detailed morphological analyses of lexical tokens in a cor-
pus. In our particular case, the Croatian Language Corpus
(Brozovié¢-Roncevi¢ and Cavar, 2008)), as one of our major
data sources needs to be annotated for subsequent analysis.

To be more precise, our understanding of a morpho-
logical lexicon and morphological corpus annotation, i.e.
our desired type of information, consists of parses of lex-
emes on the morphological level, and explicit feature bun-
dles associated with each single morpheme or allomorph,
as shown in table [1| for the word popijemo (Croatian, “to

We are grateful to Thomas Hanneforth, Adrian Thurston, and
Darko Veberic for their comments and response related to the code
and technical realization, and to our colleagues at the IHJJ for lex-
ical material and advice. Furthermore, we thank several anony-
mous reviewers for helpful hints and comments.

Table 1: Morphological parse example

We refrain from providing a hierarchical tree structure
for morpheme relations, although it might be useful to re-
veal scope ambiguities of semantic properties[] Parses with
just a linear segmentation, including a quasi-hierarchical
dependency with for example the prefix and root being con-
tained in the stem, as shown in table [I} provide enough
valuable information for some advanced research ques-
tions.

For specific research purposes, in particular questions
about morphological ambiguity load, the desired morpho-
logical analysis of a corpus should provide all possible
parses and feature bundles for each morpheme, be it a mor-
phological root or affix (potentially a null-affix), as partially
shown in table 2]

Looking at textual data from Croatian synchronic and
diachronic dialects and variants, as well as the standard lan-
guage, we are facing various problems, as for example:

— Different orthography standards have been, and are
still used.

— The lexical environment is not static, with lexical

'An elegant description of the ambiguity of the word unlock-
able for example could be based on a hierarchical representation
as [un [lock able 1] or [[un lock]| able 1. A flat and linear
segmentation representation is not as intuitive.

token kocka
kocka (4]
root suffix
parse 1 .
noun singular
feminine nominative
kocka %]
root suffix
parse 2 verb 3rd
intransitive singular
denominal

Table 2: Morphologically ambiguous parse example

items emerging and disappearing, their semantic properties
changing etc.

— Lexical changes occurred, some might have affected
the morphological makeup of individual word-forms (in-
cluding changes in paradigms), some might be related to
different feature bundles associated with them.

Since various domains of lexical and morphological
properties and features in our particular case are still subject
to ongoing research, the set of features is necessarily open
and unspecified from the outset. We expect in particular
semantic properties, new feature types that result from lin-
guistic conceptual necessities, or marking of linguistic ori-
gin and cultural background to emerge during future stud-
ies. Also, identifiers for named entities appear to be natural
extensions of the feature set. The annotations should be ex-
tensible with respect to these properties. Any extension of
the morphological feature set should directly be integrated
into the annotations of an entire corpus.

Once the morphological segmentation is available, fur-
ther annotations and analyses can be incorporated in a
trivial way. For example, the generation of lemmata for
segmented word-forms can be achieved by appending the
canonical inflectional suffix to the identified base, and po-
tentially applying the necessary allomorphic change to the
root. Furthermore, for establishing associations of word-
forms to semantic fields, i.e. identifying the semantic root
of a complex word-form, the lemma of the root provides a
useful additional annotation information. For most Slavic
and Germanic languages the rightmost root in a word-form
is the semantic head of a complex morpheme. Thus, a
general strategy for the identification of the root-lemma is
to pick the rightmost root morpheme and append to it the
canonical inflectional suffix.

This strategy is on the one hand attractive, because by
identification of the lexical root one can relate complex
word-forms to their underlying semantic concept. On the
other hand, many word-forms are not strictly compositional
to allow this. Consider the word-form neprijatelj (“en-
emy”):

— Surface form: neprijatelj

— Segmentation: ne <prefix> — prijatelj <root>

— Root lemma: prijatelj

— Base lemma: neprijatelj

The root-lemma in this case is not a direct derivation or
composition of the negation operator and the lexical root.

The meaning of —prijateljis not neprijatelj, al-
though —prijatelj might be one of many conceptually
true properties of nepri jatel j. Nevertheless, providing
the root-lemma even in this case allows for associations of
lexical items with fundamental concepts and word classes,
in particular, if derivational morphology is involved in the
word-formation process of a surface form. Our goal is thus
to annotate the corpus for both lemma types, i.e. the root-
and the base-lemma. The latter is achieved by inclusion of
all prefixes in the lemma formation rule that are part of the
morphological base.

To achieve this, a software solution is necessary. Man-
ual annotation of large corpora is not feasible, it would lack
consistency on the large scale, i.e. it is error prone. A soft-
ware solution allows for systematic and consistent annota-
tion of large corpora. Errors in the annotation should be
systematically corrected in the grammar and formalism of
some algorithmic annotation solution, rather than corrected
manually in a corpus.

To sum up, a software solution should have the follow-
ing properties:

a. It should provide parses of word-forms into mor-
phemes.

b. It should provide annotations (feature bundles) for
each single morpheme.

c. It should be extensible, wrt. the feature-bundles asso-
ciated to morphemes, as well as to the list of morphemes as
such.

A software solution, however, to our knowledge, does
not exist for the languages we are interested in.

The specification might look like an all-in-one device
for every purpose. However, its development appears to be
feasible, with a very simple, and nevertheless efficient tech-
nical solution, i.e. finite state transducers (Berstel, 1979;
Berstel and Reutenauer, 1988). In the following we de-
scribe the algorithmic specification of CroMo, the morpho-
logical parser, annotator and lemmatizer, developed for the
Croatian standard, and synchronic and diachronic variants.

1.1. Previous approaches

Finite state methods for computational modeling of nat-
ural language morphology are wide-spread and well under-
stood. Various commercial and open-source FSA-based de-
velopment environments, libraries and tools exist for mod-
eling of natural language morphology. A detailed discus-
sion of their properties and application for various lan-
guages would be beyond the scope of this article. Some
overview can be found in recent literature, e.g. (Sproat,
2000; [Beesley and Karttunen, 2003; Roark and Sproat,
2007), further links to literature and implementations can
be found in the context of the OpenFst library (Allauzen et
al., 2007).

For Croatian there are various descriptions of the for-
malization and computational modeling of morphology in
terms of finite state methods (Tadié, 1994; Lopina, 1999).
However, an implemented testable application is not avail-
able.

Some solutions that have been implemented for exam-
ple for German come close to the system requirements
specified above. The SMOR (Schmid et al., 2004) and Mor-

phisto (Zielinski and Simon, 2008)) systems partially repre-
sent such a type of computational morphology application.
An almost complete overlap of features and properties can
be found in the implementation of the German morphology
as described in the TAGH (Geyken and Hanneforth, 2005)
system.

2. FST for morphological segmentation

For various reasons, we decide to stick to the approach
and implementation strategy of TAGH, while we apply our
own experimental libraries and development environment
Following the TAGH-approach (Geyken and Hanneforth,
2005), we model Croatian morphology by referring exclu-
sively to morphotactic regularities, using morpheme and al-
lomorph sets and regular morphological rules, such that a
deterministic finite state transducer (FST) can be generated.

The initial modeling step consists of grouping of mor-
phemes. While each application might involve different
considerations about how morphemes have to be grouped,
in general if should be based on criteria like (a.) having
the same feature specification, and (b.) being subject to the
same morphological rules.

In CroMo each morpheme group represents one deter-
ministic and acyclic finite state transducer (DFST). The de-
sign is similar to the Mealy (Mealy, 1955) or Moore ma-
chine (Black, 2004). Every morpheme DFST emits on en-
try a tuple of the byte-offset in the input string, and the
feature bundle that is associated with the DFSA path. In
every final state the DFST emits the same tuple. This way
morphemes are marked with a start and end index, as well
as the corresponding feature bundle, representing the de-
sired annotation. The following graph shows a simplified
example of an acyclic DFST for verbal roots:

¢
’0 ! e t e a v root)-index
°dl »

. vroot (-index

>

In the same way verbal (e.g. aspectual) prefixes are
organized into acyclic DFSTs, as shown in the following
graph:

v pref)index asp _

v pref)-index asp _

The verbal inflectional paradigm is organized in the
same way. Since the model is based on purely morphotactic
distributional regularities, potential phonological phenom-
ena are expressed using exclusively allomorphic variations.

The automata and grammar definitions we use are compatible
with several existing systems and libraries.

The following graph shows a simplified network for verbal
suffixes:

v suf J-index pres 1stpl

v suf -index pres 2nd pl _

v suf)-index pres 3rd pl _

Once all morphemes are grouped into DFSTs, and
the appropriate emission symbols (the annotations) are as-
signed to each entry and final state of the DFST, each mor-
pheme group is assigned an arbitrary variable name, which
is used in the definition of rules. A rule that makes use of
the automata above could be defined as follows:

vAspectPrefx . vAtiRoots . vInflSuf

This rule describes the concatenation of the verbal root
DFST with the DFST for the verbal inflectional paradigm,
using common regular expression notation. In this case we
use the regular expression syntax as defined for the Ragel
(Thurston, 2006)) state machine compiler. Additionally, the
prefixes are defined as optional and potentially recursive
prefixes concatenated with the verbal root DFST. This defi-
nition generates a cyclicﬂ deterministic transducer with ev-
ery final state of beginning and intermediate sub-DFSTs
into a non-final state, linked to the initial state of the con-
catenated DFSTs via an e-transmission, as shown in the fol-
lowing graph:

3Cyclicality in this particular case leads to more compact au-
tomata. In principle, the depth of recursion of such prefixes could
be limited (empirically and formally), and formalized using the
appropriate regular expression syntax.

-
-
-

v suf)-index pres 1st pl
v suf)-index pres 3rd pl

-
o
2
&
@
L
&
x
3
©
£
5
E
>

v suf)-index pres 1stsg
v suf)-index pres 2st sg .
v suf)-index pres 3rd sg

v suf (-index

x
)
°
£
e
i}
e
>

B

v pref (-index

Such a DFST emits a tuple containing the byte-offset
and the corresponding annotation symbols at the initial
state, and at each morpheme boundary (former initial and
final states of the sub-DFSTs).

Using this approach, all lexical classes are defined as
complex (potentially cyclic) DFSTs, and combined, to-
gether with the closed class items, as one monolithic DFST.

The advantage of such a representation is not only that
the resulting morphological representation is compressed,
but also that it is processed in linear time, with the identifi-
cation of morpheme boundaries and corresponding feature
bundles being restricted by contextual rules.

In order to cope with morphological ambiguity, this ap-
proach is extended. In principle there are two major ap-
proaches to deal with ambiguity, either one has to allow for
non-deterministic automata (two different transitions with

the same input emit a different output tuple), or ambiguity
is mapped on the emission of multiple annotation tuples. In
the case of CroMo, the latter option is used in the model-
ing. Every emission is a tuple of length 0 to n, such that e.g.
orthographically ambiguous nominal suffixes like a (geni-
tive singular or plural) are modeled as a single transition in
a DFST with the final state emitting two annotation tuples
that contain the specific case and number features.

2.1. Interoperability and annotation standard

Current language resources face a serious problem, re-
lated to issues of interoperability and annotation compati-
bility. Various different tag-sets are used for particular lan-
guages, and some of those tend not to be straight-forward
compatible. In the same way, linguistic annotation tools do
not necessarily make use of some standardized tag-set, and
such a tag-set actually does not even exist.

For our purposes here we decided to offer maximal in-
teroperability in the resulting corpus annotation, as well as
in the annotation tool as such, one that is maximally com-
patible with existing tag-sets, as language specific as neces-
sary, and at the same time maximally extensible. The Gen-
eral Ontology for Linguistic Description (GOLD) (Farrar
and Langendoen, 2003} [Farrar et al., 2002; |Farrar, 2003)
was originally envisioned as a solution to the problem of
resolving disparate markup schemes for linguistic data.
GOLD specifies basic linguistic concepts and their interre-
lations, and can be used, to a certain extent, as a description
logic for linguistic annotation.

We make use of three core concept classes in GOLD,
and the necessary sub-concepts, i.e. MorphoSemanticProp-
erty, MorphosyntacticProperty, and LinguisticExpression.
The concepts defined therein relate to the notions that are
expected to be emitted by CroMo, i.e. morphological prop-
erties of morphemes (e.g. prefix, suffix, root), morpho-
syntactic properties (e.g. case, number), and morpho-
semantic properties (e.g. aspect, mood, tense).

By using the labels for concepts as defined in GOLD,
we should be able to maintain maximal compatibility with
other existing tag-sets. While the logic of GOLD would
burden a morphological parsing algorithm, the reference to
the concepts doesn’t seem problematic. Representing the
concepts as pure emission strings associated to the emis-
sion states, as discussed above, might decrease memory and
performance benefits of a DFST-based analyzer. To maxi-
mize the performance, the GOLD-concepts and relations
are mapped on a bit-vector. Encoding of the relevant con-
cepts can be achieved with bit-vectors of less than 64 bit.

The mapping defines constants that correspond to bit-
masks that are pre-compiled into the DFST. The bit-
mask for example for Genitive might be defined as
one that corresponds to set first and second bits of the
terminal-class bit-field, plus the corresponding bits that
indicate that the sub-class CaseProperty is set, as
well as the bit for the corresponding top-node class
MorphosyntacticProperty, as shown in the follow-
ing graphic:

top-node concept

sub-class

In a limited way, via definitions of constants and map-
ping of linguistic annotation in the morpheme dictionaries,
one can maintain implicatures and inheritance relations, as
defined in the ontology, via bit-vector representations and
appropriate bit-masks.

For the morphological analyzer this does not imply any
additional processing load, i.e. the emission tuples con-
sist of bit-vectors in form of 4-byte numerical integer val-
ues. Converting the emission tuples (i.e. individual bit-
vectors) into literal string representations can be achieved
efficiently, once an input string is analyzed completely.

2.2. Implementation

CroMo consists of two sets of code-bases. The first
component converts a lexical base into a formal automaton
definition. The second compiles together with the automa-
ton definitions into a binary application.

The lexical base is kept either in database tables, spread-
sheets, or textual form. The different formats allow us
to maintain a minimally invasive lexical coding approach.
Linguists or lexicologists are not required to learn a formal
language for DFST definitions. Furthermore, they are free
to use their individual way of annotation, being guided by
GOLD concepts, but free to define their own, should these
not be part of GOLD. CroMo provides guidelines for the
data-format, but also the possibility to use individual scripts
for data conversion and annotation mappings.

The individual morpheme lists, annotations and rule
definitions are compiled into Ragel (Thurston, 2006) au-
tomata definitions, as described above. Besides rules that
are related to concrete morpheme lists and the correspond-
ing DFSTs, there are also guessing rules that define general
properties of nouns, verbs and adjectives. The features that
are used, be they specified in GOLD or not, are mapped on
bit-vectors, and C-header files with the constant literal and
bit-vector mask definitions are generated.

Ragel generates a monolithic DFST as C-code, using
highly efficient C-jump code (goto-statements), as well
as a DOT-file for visualization of the resulting automaton
(using e.g. Graphvizﬂ). The generated code is wrapped in
a C++ class that handles input and output, and controls the
program logic.

In the current version the generation of the root- and the
base-lemma is encoded in the emission bit-vector. One byte
is reserved to mark the reverse offset for string concatena-
tion, while two bytes are reserved to point to an element
in a string array with the corresponding string that needs to
be appended. The form ¢itamo would be associated with
an offset of -2 and a corresponding suffix #i. This solution
doesn’t match the general paradigm, and is just temporary.

4Seehttp://www.graphviz.org/|for details.

In the next release the output characters of the correspond-
ing lemma will be integrated in the emission of the trans-
ducer, associated with each single transition. Thus every
emission will be a tuple that contains tuples of output char-
acters and optional annotation bit-vectors.

The following graphic shows the general automaton
compilation workflow, implemented in a single shell-
command:

Morpheme tables Rules

v

Ragel code Code

7

Code DOT

'

Binary

CroMo expects a token list as input. Tokens are pro-
cessed sequentially. For each token, all emitted tuples are
collected in a stack. Only matching start- and end-tuples
are returned, if there are compatible sub-morpheme analy-
ses that span over the complete input token length.

The significant implementation features that differenti-
ate CroMo from other solutions, are:

1. The code-base is platform independent and free
open-source, using only free and open tools like GCC and
Ragel for compilation.

2. CroMo doesn’t depend on any particular encoding
standard. The lexical base can be encoded in any common
encoding, since the automaton processing is purely binary
(i.e. byte-based). The character encoding of the morpheme
definitions and the input tokens should match. In principle
it is possible to use multiple different encodings.

The extension of the morphological base is kept trivial,
along the lines of the requirements specified above, i.e. the
necessity to be able to add newly identified morphemes or
paradigms from diachronic and synchronic variants.

3. Evaluation

The evaluation version of CroMo contains approx.
120,000 morphemes in its morpheme-base, using UTF-8
character encoding. The number of strings it can recognize
is infinite, due to cyclic sub-automata. Unknown word-
forms can be analyzed due to incorporated guessing rules.

For the following evaluation results we used a 2.4 GHz
64-bit Dual-Core CPU. In the evaluation version only a sin-
gle core is used during runtime of the FST, while both CPU
cores are used during compilation.

Compilation of the morphology requires min. 4 GB of
RAM using GCC 4.2. This is expected due to the mono-
lithic architecture, and since the Ragel-generated C-code
of the transducer gets very large. The compilation process
takes less than 5 minutes, using both CPU cores. The re-
sulting binary footprint is less than 5 MB of size.

The final automaton consists of approx. 150,000 transi-
tions and 25,000 states.

http://www.graphviz.org/

We selected randomly 10,000 tokens with an average
morpheme length of 2.5 morphemes. CroMo processes in
average approx. 50,000 tokens per second (real 10,000 to-
kens per 150 millisec.), including runtime instantiation in
memory, mapping of the analysis bit-vectors to the cor-
responding string representations, generation of lemmata,
and output redirection to a log-file. An extension of the
morpheme base has no significant impact on memory in-
stantiation time, neither on the runtime behavior. The mem-
ory instantiation can be marginalized for a large processing
sample.

CroMo doesn’t implement transitional or emission-
probabilities, due to missing quantitative information from
training data. Once an annotated corpus is available, these
weights can trivially be implemented as additional weights
in the emission tuple.

A relevant evaluation result is the coefficient of the ra-
tio between all and relevant emissions, i.e. the percentage
of relevant (possible) morpheme analyses and all generated
ones. Due to certain limitations, we did not perform such an
evaluation, neither a recall evaluation on a predefined eval-
uation corpus. The results of these evaluations, together
with the source code, will be made available on CroMo’s
web site http://personal .unizd.hr/ dcavar/
CroMo/L

4. Comments

CroMo manifests a highly efficient morphological seg-
mentation and annotation algorithm, with little margin for
efficiency improvement in the code base.

The use of GOLD as an annotation standard has been
shown to be feasible, on the implementation level. How-
ever, GOLD is still under development. Many necessary
concepts have not yet been implemented. A benefit of us-
ing a DL for annotation has yet to be shown. Once nec-
essary syntactic concepts are specified in GOLD, syntax-
based disambiguation would be feasible. GOLD mappings
to different tag-sets have still to be established, to fulfill the
promise of interoperability and annotation compatibility.

5. References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: A gen-
eral and efficient weighted finite-state transducer library.
In Proceedings of the Ninth International Conference
on Implementation and Application of Automata, (CIAA
2007), pages 11-23. Springer-Verlag.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford, April.
Jean Berstel and Christophe Reutenauer. 1988. Rational
Series and Their Languages. EaTCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin,

December.

Jean Berstel. 1979. Transductions and Context-Free Lan-
guages. Teubner Studienbiicher, Stuttgart.

Paul E. Black. 2004. Dictionary of algorithms and
data structures. Online publication: U.S. National
Institute of Standards and Technology, Available from
http://www.nist.gov/dads/HTML/mooreMachine.html,
December.

Dunja Brozovié-Ron¢evi¢ and Damir Cavar. 2008.
Hrvatska jezicna riznica kao podloga jezicnim i
jezi¢nopovijesnim istraZivanjima hrvatskoga jezika. In
Vidjeti Ohrid, Hrvatska sveuciliSna naklada, pages 173—
186, Zagreb. Hrvatsko filolosko drustvo.

Gavin Burnage. 1990. CELEX - A guide for users. Tech-
nical report, Centre for Lexical Information, University
of Nijmegen, Nijmegen.

Scott O. Farrar and D. Terence Langendoen. 2003. A lin-
guistic ontology for the semantic web. Glot Interna-
tional, 7(3):1-4, March.

Scott O. Farrar, William D. Lewis, and D. Terence Langen-
doen. 2002. A common ontology for linguistic concepts.
In N. Ide and C. Welty, editors, Semantic Web Meets
Language Resources: Papers from the AAAI Workshop,
pages 11-16. AAAI Press, Menlo Park, CA.

Scott O. Farrar. 2003. An Ontology for Linguistics on the
Semantic Web. Ph.D. thesis, The University of Arizona,
Tucson, Arizona.

Alexander Geyken and Thomas Hanneforth. 2005. TAGH:
A complete morphology for german based on weighted
finite state automata. In Anssi Yli-Jyrd, Lauri Karttunen,
and Juhani Karhumiki, editors, FSMNLP, volume 4002
of Lecture Notes in Computer Science, pages 55-66.
Springer, September.

Vjera Lopina. 1999. Strojna obrada imeni¢ne morfologije
u pisanome hrvatskom jeziku. Ma thesis, Centar za post-
diplomske studije Dubrovnik, Dubrovnik, October.

George H. Mealy. 1955. A method for synthesizing
sequential circuits. Bell System Technical Journal,
34(5):1045—1079, September.

Antoi Oliver and Marko Tadi¢. 2004. Enlarging the croat-
ian morphological lexicon by automatic lexical acquisi-
tion from raw corpora. In Proceedings of LREC 2004,
volume IV, pages 1259-1262, Lisbon, May. ELRA.

Brian Roark and Richard Sproat. 2007. Computational Ap-
proaches to Syntax and Morphology. Oxford University
Press, Oxford.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: A german computational morphology covering
derivation, composition, and inflection. In Proceedings
of the IVth International Conference on Language Re-
sources and Evaluation (LREC 2004), pages 1263-1266,
Lisbon, Portugal.

Richard Sproat. 2000. A Computational Theory of Writing
Systems. AT&T Bell Laboratories, New Jersey, July.

Marko Tadi¢. 1994. Racunalna obradba morfologije
hrvatskoga knjiZevnog jezika. doctoral dissertation, Filo-
zofski fakultet Sveudilista u Zagrebu, Zagreb, Croatia.

Adrian D. Thurston. 2006. Parsing computer languages
with an automaton compiled from a single regular ex-
pression. In I11th International Conference on Imple-
mentation and Application of Automata (CIAA 2006),
volume 4094 of Lecture Notes in Computer Science,
pages 285-286, Taipei, Taiwan, August.

Andrea Zielinski and Christian Simon. 2008. Morphisto —
an open-source morphological analyzer for german. In
Proceedings of FSMNLP 2008, Ispra, Italy, September.

http://personal.unizd.hr/~dcavar/CroMo/
http://personal.unizd.hr/~dcavar/CroMo/

	Introduction
	Previous approaches

	FST for morphological segmentation
	Interoperability and annotation standard
	Implementation

	Evaluation
	Comments
	References

