
Proceedings of
Formal Grammar 2004

Gerhard Jäger,

Paola Monachesi, Gerald Penn
and Shuly Wintner

(eds.)

August 7/8, 2004
Nancy

Contents

Preface v

1 On Learning Discontinuous Dependencies from
Positive Data 1

Denis Béchet, Alexander Dikovsky, Annie Foret
and Erwan Moreau

2 Learning Dependency Languages from a Teacher 17

Jérôme Besombes and Jean-Yves Marion

3 An integrated approach to French liaison 29

Olivier Bonami, Gilles Boyé, Jesse Tseng

4 On Induction of Morphology Grammars and its
Role in Bootstrapping 47

Damir Ćavar, Joshua Herring, Toshikazu Ikuta,
Paul Rodrigues, Giancarlo Schrementi

5 Bidirectional Optimality for Regular Tree
Languages 63

Stephan Kepser

6 Grammatical Framework and Multiple
Context-Free Grammars 77

Peter Ljunglöf

7 Elliptical Constructions and Surface-Based
Syntax 91

Stefan Müller

iii

iv / Proceedings of Formal Grammar 2004

8 Type-Logical HPSG 107

Carl Pollard

9 About Spilled Beans and Shot Breezes 125

Jan-Philipp Soehn

10 Resumption in Persian Relative Clauses 141

Mehran Taghvaipour

11 A Hierarchy of Mildly Context-Sensitive
Dependency Grammars 151

Anssi Yli-Jyrä and Matti Nykänen

Preface

On behalf of the Program Committee for Formal Grammar 2004 we
are very pleased to present you with this volume containing the papers
accepted for presentation at the Conference on Formal Grammar, held
August 7/8, 2004, in Nancy, France. As in previous years, the conference
is held in conjunction with the European Summer School in Logic,
Language, and Information (ESSLLI2004).

This is the ninth in a series of such conferences, following the ini-
tial FG conference in August 1995 in Barcelona. The objective of these
meetings is to provide a forum for the presentation of new and original
research on formal grammar, with particular regard to the application
of formal methods to natural language analysis. Themes of interest
include, but are not limited to, formal and computational phonology,
morphology, syntax, semantics and pragmatics; model-theoretic and
proof-theoretic methods in linguistics; constraint-based and resource-
sensitive approaches to grammar; learnability of formal grammar; in-
tegration of stochastic and symbolic models of grammar; foundational,
methodological and architectural issues in grammar.

As in previous years, the call for papers elicited a fair number of very
good submissions. We would like to thank the members of the program
committee, listed below, for their time and effort in evaluating these
papers.

. Chris Brew (Ohio State)

. Miriam Butt (Konstanz)

. David Chiang (UPenn)

. Tim Fernando (Dublin)

. Philippe de Groote (LORIA, Nancy)

. Mark Hepple (Sheffield)

. Makoto Kanazawa (Tokyo)

. Jonas Kuhn (UTexas at Austin)

v

vi / Proceedings of Formal Grammar 2004

. Shalom Lappin (King’s College, London)

. Jens Michaelis (Potsdam)

. Guido Minnen (DaimlerChrysler AG)

. Uwe Mönnich (Tübingen)

. Stefan Müller (Bremen)

. Mark-Jan Nederhof (Groningen)

. James Rogers (Earlham College)

. Anoop Sarkar (Simon Fraser University)

. Giorgio Satta (Padua)

We are glad to announce three invited talks by distinguished re-
searchers. Ed Keenan from the University of California at Los An-
geles agreed to give a lecture on “Bare Grammar: A New Approach to
Language Universals”. Glyn Morrill from the Universitat Politecnica
de Catalunya is going to present joint work with Anna Gavarró “On
aphasic comprehension and working memory load”. Last but not least,
Giorgio Satta from the University of Padua will give a presentation.

We are grateful to CSLI Publications for agreeing to publish a vol-
ume with the full papers after the conference. They will appear as
Online Proceedings. Nevertheless we decided to make the extended ab-
stracts available during the conference as ESSLLI readers as in previous
years.

Last but not least, we are indebted to the local organizers of ESS-
LLI2004 in Nancy, in particular to Patrick Blackburn and Carlos Are-
ces, for providing us with the necessary logistics, ranging from handling
the registration over organizing accommodation to printing these pro-
ceedings. We are looking forward to inspiring and enjoyable days in
Nancy.

June 2004
Gerhard Jäger, Paola Monachesi, Gerald Penn and Shuly Wintner

1

On Learning Discontinuous

Dependencies from Positive Data
Denis Béchet, Alexander Dikovsky, Annie Foret
and Erwan Moreau

Abstract This paper is concerned with learning in the model of Gold
the Categorial Dependency Grammars (CDG), which express discontin-
uous (non-projective) dependencies. We show that rigid and k-valued
CDG (without optional and iterative types) are learnable from strings.
In fact, we prove that the languages of dependency nets coding rigid
CDGs have finite elasticity, and we show a learning algorithm. As a
standard corollary, this result leads to the learnability of rigid or k-
valued CDGs (without optional and iterative types) from strings.

1.1 Introduction

Dependency grammars (DGs) are formal grammars assigning depen-
dency trees (DT) to generated sentences. A DT is a tree with words
as nodes and dependencies - i.e. named syntactic relations between
words - as arrows. Being very promising from the linguistic point of
view (see Mel’cuk (1988)), the DGs have various advantages as formal
grammars. Most important is that in terms of dependencies one can
naturally encode word order (WO) constraints independently of syn-
tagmatic relations. One of the most important WO constraints is that
of DT projectivity: projections of all words fill continuous 1 intervals.
It is widely believed that DTs are a by-product of head selection in

1So “discontinuous” corresponds to “non-projective” in dependency terms.

1

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

2 / Béchet, Dikovsky, Foret and Erwan Moreau

constituents. This is evidently false for non-projective DTs because the
projections of the heads are always continuous. But even in the pro-
jective case the difference between the two syntactic structures is deep.
Even if sometimes the DTs defined from heads are isomorphous to the
DTs defined directly, the syntactic functions corresponding to individ-
ual dependencies (i.e. the corresponding primitive dependency types)
are different. The types of dependencies determine the distributivity
of a word in a given lexico-grammatical class in a specific role (as the
governor, as a subordinate, as the subject, as a direct object in the
post-position, pronominalized or not, etc.). This is why, the number of
primitive types is noticeably greater for dependency relations than for
syntagmatic relations. The lexical ambiguity is greater for DGs, which
is compensated by high self-descriptiveness of individual dependency
types. This explains the differences in traditional analyses of the same
constructions in syntagmatic terms (which are more or less based on
X-bar syntax) and in dependency terms.

Many DGs are projective, i.e. define only projective DTs (cf. Gaif-
man (1961), Sleator and Temperley (1993), Lombardo and Lesmo
(1996)). This property drastically lowers complexity of DGs. As it
concerns symbolic learning, positive results are known exclusively for
projective DGs: Moreau (2001), Besombes and Marion (2001), Bechet
(2003). In this paper we obtain the first result of symbolic learnability
of non-projective DGs from positive data. It holds for a reach class
of DGs introduced recently in Dikovsky (2004). At the same time, we
describe some cases of unlearnability from strings of such grammars
with optional or iterative types.

1.2 Categorial Dependency Grammars

1.2.1 Syntactic types

We extend the definition of types in Dikovsky (2004) to repetitive and
optional types as follows. C will denote a finite set of elementary cat-
egories. Elementary categories may be iterated and become optional.
C∗=df {C∗ | C ∈ C}, C+=df {C+ | C ∈ C}, C?=df {C? | C ∈ C},
will denote respectively the sets of iterative, repetitive and optional cat-
egories. Cω=df C∗ ∪C+ ∪C?. All categories in Cω are neutral. Besides
them there are polarized categories of one of four oriented polarities:
left and right positive ↖,↗ and left and right negative ↘,↙ . For
each polarity v, there is the unique “dual” polarity v̆: ↖̆ = ↙, ↙̆ =
↖, ↗̆ = ↘, ↘̆ =↗ . Intuitively, the positive categories can be seen
as valencies of the outgoing distant dependencies of governors, and the
negative categories as those of the incoming distant dependencies of

On Learning Discontinuous Dependencies from Positive Data / 3

subordinate words. So they correspond respectively to the beginnings
and the ends of distant dependencies. For instance, the positive valency
(↖pre−UPON−obj) marks the beginning of the distant dependency
pre−UPON−obj of a transitive verb governing a left-dislocated object
headed by the preposition ‘UPON’, whereas the end of this dependency:
UPON is marked by the dual negative valency (↙ pre−UPON−obj)
(cf. upon what dependency theory we rely).
↗C,↖C,↘C and↙C denote the corresponding sets of polarized

distant dependency categories. For instance, ↗C = {(↗ C) | C ∈ C}
is the set of right positive categories. V +(C) =↗C ∪ ↖C is the set
of positive distant dependency categories, V −(C) =↘C ∪ ↙C is the
set of those negative.

Defining distant dependencies, it is sometimes necessary to express
that the subordinate word is the first (last) in the sentence, in the
clause, etc., or it immediately precedes (follows) some word. E.g., in
French the negative dependency category ↙ clit−dobj of a cliticized
direct object must be anchored to the auxiliary verb or to the verb in
a non-analytic form. For that we will use specially marked anchored
negative categories: Anc(C)=df {#(α) | α ∈ V −(C)} - our name for
negative categories whose position is determined relative to some other
category - whereas the negative categories in V −(C) will be called loose.

Definition 1 The set Cat(C) of categories is the least set verifying the
conditions:

1. C ∪ V −(C) ∪ Anc(C) ⊂ Cat(C).

2. For C ∈ Cat(C), A1 ∈ (C ∪ Cω ∪ Anc(C) ∪ ↖C) and A2 ∈
(C ∪Cω ∪Anc(C) ∪ ↗C), the categories [A1\C] and [C/A2] also
belong to Cat(C).

We suppose that the constructors \, / are associative. So every com-
plex category α can be presented in the form:

α = [Lk\ . . . L1\C/R1 . . . /Rm].
For instance, [#(↙ clit dobj)\subj\S/auxPP] is one of possible cat-
egories of an auxiliary verb, which defines it as the host word for a
cliticized direct object, requires the local subject dependency on its
left and, on its right, the local dependency auxPP with a subordinate.

1.2.2 Grammar definition

Definition 2 A categorial dependency grammar (CDG) is a system G =
(W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected root category S, and δ -
called lexicon - is a finite substitution on W such that δ(a) ⊂ Cat(C)
for each word a ∈W.

4 / Béchet, Dikovsky, Foret and Erwan Moreau

Now we will extend to new types the definitions of the language and
DT language generated by a CDG. The language and DT language gen-
erated by a CDG are defined using a provability relation ` on strings
of categories. The core part of this definition are the rules of polar-
ized dependency valencies control. The idea behind these rules is that
in order to establish a distant dependency between two words with
dual dependency valencies, the negative valency must be loose. The
anchored negative valencies can serve only to anchor a distant subordi-
nate to a host word. As soon as the correct position of the subordinate
is identified, its valency becomes loose and so available to the governor.

In the definition below we suppose that to each occurrence of a cate-
gory Γ1CΓ2 corresponds a DT D of category C. r(D) denotes the root
of D. For space reasons, we present only the rules for left constructors.
The rules for right constructors are similar.

Definition 3 Provability relation `:
Local dependency rule:

L. Γ1C[C\α]Γ2 ` Γ1αΓ2. If C is the category of D1 and [C\α] is
that of D2, then α becomes the category of the new DT : D1 ∪ D2

∪ {r(D1)
C
←− r(D2)}.

ω-dependency rules:
I. Γ1C[C∗\α]Γ2 ` Γ1[C

∗\α]Γ2. If C is the category of D1 and
[C∗\α] is that of D2, then [C∗\α] in the consequence becomes the

category of the new DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

R. Γ1C[C+\α]Γ2 ` Γ1[C
∗\α]Γ2. If C is the category of D1 and

[C+\α] is that of D2, then [C∗\α] becomes the category of the new

DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

O. Γ1C[C?\α]Γ2 ` Γ1αΓ2. If C is the category of D1 and [C?\α]
is that of D2, then α in the consequence becomes the category of the

new DT : D1 ∪ D2 ∪ {r(D1)
C
←− r(D2)}.

Ω. Γ1[C\α]Γ2 ` Γ1αΓ2 for all C ∈ C∗ ∪C? 2.
Anchored dependency rule:

A. Γ1#(α)[#(α)\β]Γ2 ` Γ1αβΓ2, #(α) ∈ Anc(C).
Distant dependency rule:

D. Γ1(↙C)Γ2[(↖C)\α]Γ3 ` Γ1Γ2αΓ3.
The rule applies if there are no occurrences of subcategories ↙ C,
#(↙C) and↖C in Γ2. If↙C is the category of D1 and [(↖C)\α]
is that of D2, then α becomes the category of the new DT : D1 ∪

D2 ∪ {r(D1)
C
←− r(D2)}.

2The DTs rest unchanged when no instruction.

On Learning Discontinuous Dependencies from Positive Data / 5

`∗ denotes the reflexive-transitive closure of ` .

Definition 4 A DT D is assigned by a CDG G = (W,C, S, δ) to a
sentence w (denoted G(D,w)) if D is defined as DT of category S in
a proof Γ `∗ S for some Γ ∈ δ(w).
The DT-language generated by G is the set of DTs ∆(G) = {D | ∃w ∈
W+ G(D,w)}. The language generated by G is the set of sentences
L(G) = {w ∈ W+ | ∃D G(D,w)}.

Example 5 (PP-movement in English from Dikovsky (2004))

the person to whom you must refer is Smith

n-copulC5C4C3subjprep-whC2C1det

[subj/attr-rel]

#(↙pre-TO-obj)

[#(↙pre-TO-obj) \ attr-rel / inf-obj]

inf-obj

attr-rel

subj

[subj \ S]

S

~

n-copul

~
inf-obj

=
subjprep-wh

=

det

pre-TO-obj

=

subj

~

[attr-rel / inf-obj]

= w

attr-rel

This movement is expressed using the following categories:

C1 = [det\subj/attr−rel] ∈ δ(person),
C2 = [#(↙pre−TO−obj)/prep−wh] ∈ δ(to),
C3 = [subj\#(↙pre−TO−obj)\attr−rel/inf−obj] ∈ δ(must),
C4 = [(↖pre−TO−obj)\inf−obj] ∈ δ(refer),
C5 = [subj\S/n−copul] ∈ δ(is),
det ∈ δ(the), prep−wh ∈ δ(whom), subj ∈ δ(you), and n−copul ∈
δ(Smith).

The following example cited from Dikovsky (2004) shows that CDGs
can generate non-CF languages and are more expressive than depen-
dency grammars generating projective DTs.

Example 6 Let G0 = ({a, b, c, d1, d2, d3},C0, S, δ0), where δ0 is de-
fined by:

6 / Béchet, Dikovsky, Foret and Erwan Moreau

a 7→ [β\α], [α\α],
b 7→ [α1\D/A],
c 7→ [D\A],

d1 7→ α,
d2 7→ [α\β1\S/D],
d3 7→ D,

where α = #(↙ B), α1 = (↖ B), β = #(↙ C) and β1 = (↖ C).
L(G0) = {d1a

nd2b
nd3c

n | n > 0}.
A proof of d1a

3d2b
3d3c

3 ∈ L(G0), in which α = #(↙B), α1 = (↖B),
β = #(↙C) and β1 = (↖C):

a a a d2 b b b c c

[D\A][D\A][D\A][α1\D/A][α1\D/A][α1\D/A][α\β1\S/D]

= ~= ~~

D

A

D

A

D

S

d3 c

D

+ j

A

d1

[α\α][α\α][β\α]β

+=/+

(↙B)

(↙B)

(↙B)

[β1\S/D]

1.2.3 Language of (untyped) dependency nets

A CDG connects the words of a sentence by oriented edges that cor-
respond to: local dependencies, anchored dependencies, discontinuous
dependencies. Thus, the parsing of a sentence can be summarized by a
dependency net built from nodes connected by dependencies.

Definition 7 An untyped node is a list of vertices called slots associ-
ated to a word. A node is an untyped node where each slot corresponds
to the elementary categories of one category of the word.

Here is the node corresponding to [G1\· · ·\Gn\F/Dm/ · · · /D1]:

K �

...........
...........
...........
...........
...........
.
O

..W

..�
...........
...........
...........
...........
.
�

word

G1· · ·Gn F Dm· · ·D1

· · · · · ·

Definition 8 An (untyped) dependency net is a list of (untyped) nodes
connected by local (l), anchored (a) and distant (d) dependencies that
correspond to a parsing of the sentence.

On Learning Discontinuous Dependencies from Positive Data / 7

? ? ??????? ?
the person to youwhom must refer is Smith

l ll

l

al
d

ll

One of the slots is not connected and serves as the main conclusion
of the dependency net (i.e. the elementary category S). It appears on
the figure as an arrow without origin that ends on “is”. The depen-
dency tree (DT) corresponding to a dependency net is obtained by
erasing anchored dependencies and adding categories on local and dis-
tant dependencies (categories appear on nodes in dependency nets and
on edges in dependency trees).

Definition 9 An (untyped) dependency net N is assigned by a CDG
G if there exists a parsing of the list of words of N that corresponds to
the (untyped) nodes and the dependencies of N .
The language of dependency nets of G, denoted NL(G) is the set of
dependency nets assigned by G.
The language of untyped dependency nets of G, denoted UNL(G) is the
set of untyped dependency nets assigned by G.

Definition 10 CDGs that associate at most k nodes to each symbol
are called k-valued. 1-valued grammars are also called rigid.

1.3 Learnability, finite elasticity and limit points

A class of grammars G is learnable iff there exists a learning algorithm
φ from finite sets of words to G that converges, for any G ∈ G and for
any growing partial enumeration of L(G), to a grammar G′ ∈ G such
that L(G′) = L(G).

Learnability and unlearnability properties have been widely studied
from a theoretical point of view. A very useful property for our purpose
is the finite elasticity property of a class of languages. This term was
first introduced in Wright (1989), Motoki et al. (1991) and, in fact,
it implies learnability. A very nice presentation of this notion can be
found in Kanazawa (1998).

Definition 11 (Finite Elasticity) A class CL of languages has infi-
nite elasticity iff ∃(ei)i∈N an infinite sequence of sentences, ∃(Li)i∈N

an infinite sequence of languages of CL such that ∀i ∈ N : ei 6∈ Li and
{e0, . . . , ei−1} ⊆ Li. A class has finite elasticity iff it has not infinite
elasticity.

Theorem 12 [Wright 1989] A class that is not learnable has infinite
elasticity.

8 / Béchet, Dikovsky, Foret and Erwan Moreau

Corollary 13 A class that has finite elasticity is learnable.

Finite elasticity is a very nice property because it can be extended
from a class to every class obtained by a finite-valued relation3. We use
here a version of the theorem that has been proved in Kanazawa (1998)
and is useful for various kinds of languages (strings, structures, nets)
that can be described by lists of elements over some alphabets.

Theorem 14 [Kanazawa 1998] LetM be a class of languages over Γ
that has finite elasticity, and let R ⊆ Σ∗×Γ∗ be a finite-valued relation.
Then the class of languages {R−1[M] = {s ∈ Σ∗ | ∃u ∈ M ∧ (s, u) ∈
R} |M ∈M} has finite elasticity.

Definition 15 (Limit Points) A class CL of languages has a limit
point iff there exists an infinite sequence (Ln)n∈N of languages in CL
and a language L ∈ CL such that: L0⊆/ L1⊆/ · · · ⊆/ Ln⊆/ · · · and L =
⋃

n∈N Ln (L is a limit point of CL).

If the languages of the grammars in a class G have a limit point then
the class G is unlearnable.4

1.4 Limit points for CDGs with optional or iterative
categories

Limit point constructions.

Definition 16 (Gn, G
′
n, G∗, G

′
∗) Let S, A, B be three elementary cat-

egories. We define by induction:
C0 = S C ′0 = S
Cn+1 = (Cn/A

?) C ′n+1 = (C ′n/A
∗)/B∗

G0 = {a 7→ A, c 7→ C0} G′0 = {a 7→ A, b 7→ B, c 7→ C ′0}
Gn = {a 7→ A, c 7→ [Cn]} G′n = {a 7→ A, b 7→ B, c 7→ [C ′n]}
G∗ = {a 7→ [A/A?], c 7→ [S/A?]} G′∗ = {a 7→ A, b 7→ A, c 7→ [S/A∗]}

These constructions yield two limit points as follows.

Theorem 17 We have:
L(Gn) = {cak | k ≤ n} and L(G∗) = c{a}∗

L(G′n) = {c(b∗a∗)k | k ≤ n} and L(G′∗) = c{b, a}∗

Corollary 18 They establish the non-learnability from strings for the
underlying classes of (rigid) grammars : those allowing optional cate-
gories (A?) and those allowing iterative categories (A∗).

3A relation R ⊆ Σ∗ × Γ∗ is finite-valued iff for every s ∈ Σ∗, there are at most
finitely many u ∈ Γ∗ such that (s, u) ∈ R.

4This implies that the class has infinite elasticity.

On Learning Discontinuous Dependencies from Positive Data / 9

Proof for optional categories: Only three rules apply to Gn, G∗
in this case : L. (local dependency rule), O. and Ω. (ω-dependency
rules). These rules enjoy the subformula property.

. L(G0) : (1) it clearly contains c (of category S) ; (2) since no rule
applies to the elementary categories {A,S}, it contains only c.

. L(Gn) (n > 0) : we consider cak and denote by ∆n,k its category
assigned by Gn. We have :

∆n,0 = [Cn] = [S/A?/ . . . /A?

︸ ︷︷ ︸

n

] `∗ S (by Ω. rule, n times)

∆n,k = [S/A?/ . . . /A?

︸ ︷︷ ︸

n

]A . . .A
︸ ︷︷ ︸

k

` [S/A?/ . . . /A?

︸ ︷︷ ︸

n−1

]A . . . A
︸ ︷︷ ︸

k−1

(if k > 0,

by O. rule)
(1) By induction, for all k ≤ n, ∆n,k `∗ S, that is cak ∈ L(Gn)
when k ≤ n. (2) Let us consider w ∈ L(Gn) of a category ∆. w
cannot start with an a (a category A on the left of ∆ could not dis-
appear, due to the use of right constructors only); w cannot contain
several c, (no cancelation of S is possible since none occurs under
a constructor) ; thus w = cak for some k ≥ 0. If k > n, then after
one step ∆n,k necessarily leads to ∆n−1,k−1 or ∆n−1,k as above : by
induction starting from the case L(G0) k > n is thus not possible.
Therefore, w = cak with k ≤ n.

. L(G∗) : (1) it contains cak because of [S/A?] ` S , [S/A?][A/A?] `
[S/A?]A ` S and
[S/A?] . . . [A/A?][A/A?] ` [S/A?] . . . [A/A?]A ` [S/A?] . . . A
(2) w ∈ L(G∗) has exactly one c (at least one to provide S, and
no more as explained above); it cannot start with an a (otherwise a
type part would rest before S) ; therefore w = cak.

Proof for iterative categories: Only three rules apply to G′n, G
′
∗ :

L. (local dependency rule), I. and Ω. (ω-dependency rules),
all of them enjoying the subformula property.

. L(G′0) : (1) it clearly contains c (category S) and (2) only c since no
rule applies to {A,B, S}.

. L(G′n) (n > 0). We have D′
n = C ′n−1/A

∗ and C ′n = D′
n/B

∗.
(1) For w ∈ {c(b∗a∗)k | k ≤ n} , we have w ∈ L(G′n) by :
[C ′n]B∆ ` [C ′n]∆ and [D′

n]A∆ ` [D′
n]∆ (by I. rule) and [C ′n] `

[D′
n] ` [C ′n−1] (by Ω. rule)

(2) Let w′ ∈ L(G′n). As above for Gn, w′ cannot start with an a or
a b (right constructors only); and w′ cannot contain several c (no S
under a constructor) ; thus w′ = cw′′, where w′′ ∈ {b, a}∗.

10 / Béchet, Dikovsky, Foret and Erwan Moreau

w′ ∈ {c(b∗a∗)k | k ≤ n} follows by induction on n and on the
length of types Γ words w ∈ {b, a}∗ from the following assertion :

(i) if [C ′n]Γ ` S, then w ∈ {(b∗a∗)k | k ≤ n} and (ii) if [D′
n+1]Γ ` S

then w ∈ {a∗(b∗a∗)k | k ≤ n}.
For n = 0, (i) is clear from L(G′0) = {c}. For (ii), if Γ = BΓ′, we

get the first step with the only possibility of [D′
n+1]BΓ′ ` [C ′n]BΓ′.

For (ii), if Γ = AΓ′, we have two possibilities [D′
n+1]AΓ′ ` [C ′n]AΓ′

or [D′
n+1]AΓ′ ` [D′

n+1]Γ
′. For (i), if Γ = AΓ′, we get the first step

with the only possibility of [C ′n]AΓ′ ` [D′
n]AΓ′. For (i), if Γ = BΓ′,

we have two possibilities [C ′n]BΓ′ ` [D′
n]BΓ′ or [C ′n]BΓ′ ` [C ′n]Γ′.

This implies (i), (ii) by induction on n or a shorter type.
. L(G′∗) : (1) it clearly contains c{b, a}∗ using [S/A∗]A∆ ` S∆ (I.

rule) and [S/A∗] ` S (Ω. rule)
(2) w′ ∈ L(G′∗) has exactly one c (at least one to provide S, and no
more, as explained above for Gn); it cannot start with a (otherwise
a type part would rest before S). Therefore, w′ ∈ c{b, a}∗.

1.5 Finite elasticity of rigid UNL

This section is concerned with languages of untyped dependency nets
rather than grammars of strings. The following theorem is essential
because it implies that the corresponding class of rigid CDG (with-
out optional and iterative categories) has finite elasticity and thus is
learnable from strings. This result can also be extended to the class of
k-valued CDG for every k.

Theorem 19 Rigid CDGs define a class of languages of untyped de-
pendency nets that has finite elasticity.

Proof: We use a result of Shinohara Shinohara (1990, 1991) that
proves that formal systems that have finite thickness have also finite
elasticity. In Shinohara (1991) this result is applied to length-bounded
elementary formal system with at most k rules and also to context sen-
sitive languages that are definable by at most k rules. Formal systems
in Shinohara (1991) describe not only languages of strings but also lan-
guages of terms. They can be applied to typed or untyped dependency
nets which can be seen as well-bracketed strings (each dependency is
associated to an opening and a closing (typed) bracket). For the class of
rigid untyped dependency net grammars, a sketch of proof is as follows:

1. Definition. A CDG G1 = (W1,C, S, δ1) is included in a CDG
G2 = (W2,C, S, δ2) (notation G1 ⊆ G2) iff W1 ⊆ W2 and ∀x ∈
W1, δ1(x) ⊆ δ2(x).

2. Definition and lemma. The mapping UNL from CDG to un-
typed dependency net languages is monotonic: if G1 ⊆ G2 then

On Learning Discontinuous Dependencies from Positive Data / 11

UNL(G1) ⊆ UNL(G2).

3. Definition. A grammar G is reduced with respect to a set X of
untyped dependency nets iff X ⊆ UNL(G) and for each grammar
G′ ⊆ G, X 6⊆ UNL(G′). Intuitively, a grammar that is reduced
with respect to X covers all the structures of X and has no re-
dundant expressions.

4. Lemma. For each finite set X ⊆ UNL(G), there is a finite set
of rigid untyped dependency net languages that correspond to
the grammars that are reduced with respect to X . This is the
main part of the proof. In fact, if a rigid untyped dependency net
grammar G = (W,C, S, δ) using types Tp is reduced with respect
to X then each word that does not appear in one of the untyped
dependency net of X must be associated through δ to the empty
set. All other words must be associated to exactly one type of Tp
(the grammar is rigid). The left and right numbers of slots are
given by the occurrences of the word in the untyped dependency
nets and they must be the same for all the occurrences because
the language we try to learn corresponds to a rigid untyped de-
pendency net grammar. If the sum of the left and right arities of
each word in X is bound by m, and if n is the number of words
that appear in X , the number of equivalent grammars5 is bound
by the number of partitions of a set of n×m elements.

5. Definition. Monotonicity and the previous property define a sys-
tem that has bounded finite thickness.

6. Theorem. Shinohara proves in Shinohara (1991) that a formal
system that has bounded finite thickness has finite elasticity.

7. Corollary. Rigid untyped dependency net languages have finite
elasticity.

A learning algorithm for rigid untyped dependency net
grammars

The learning algorithm is based on Buszkowski’s original algorithm for
rigid (classical) categorial grammars Buszkowski and Penn (1989).
Since a rigid grammar G assigns only one type to each word,
X ⊆ UNL(G) implies that all occurrences of a word w
appearing in X must be used with the same type t ∈ Tp.
Thus G is reduced with respect to X if it simply contains no
useless word.

5Equivalent grammars are grammars that are associated to the same language.
A sufficient condition is the existence of a bijective relation between the primitive
types of both grammars.

12 / Béchet, Dikovsky, Foret and Erwan Moreau

The algorithm φ1 takes an input sequence s = N1, . . . , Nl

of untyped dependency nets and returns a CDG that corresponds to
the smallest

rigid untyped dependency net language compatible with s.
It returns a failure if the sequence corresponds to no rigid untyped
dependency net language 6. Here is the
algorithm φ1 :

1. For each word w, collect in s its occurrences
together with its left and right arities. Fail if a word is used with
different
arities.

2. With each word w in s, associate n+m+1 variables corresponding
to its n left argument categories, its m right argument categories
and its head
type:
Xw
−n, . . . , X

w
−1, X

w
0 , X

w
1 , . . . , X

w
m

(Xw
0 corresponding to the head type).

3. Infer from s the equality constraints for the variables
corresponding to the beginnings and the ends of the same depen-
dencies.
Respect the orientation: for each word w and each of its argument
category,
the corresponding dependency must be oriented from w to a word
with the
corresponding head type. Return a failure if this condition is not
fulfilled.

4. Resolve the resulting equality system and associate an elementary
category
with each variables’ equivalence class Xw

i .

5. Return the CDG Gs such that for each word w in s
with associated variables
Xw
−n, . . . , X

w
−1, X

w
0 , X

w
1 , . . . , X

w
m,

the lexicon of Gs assigns to w the category
[Y w
−n\−n . . . \−2Y w

−1, \−1Y w
0 /1Y w

1 /2 . . . /mY w
m], in which:

.Y w
i is Xw

i if the corresponding dependency is local and every-
where
in s there is exactly one incoming / outgoing dependency in this
slot.

6I.e. when this sequence is not included
in at least one of the rigid untyped dependency net languages.

On Learning Discontinuous Dependencies from Positive Data / 13

Besides this, \i is \ if i 6= 0 (respectively, /i is / in the
case of right argument).
.Otherwise, Y w

i = (Xw
i)? if there is at most one outgoing

dependency in this slot and at least one net with no outgoing
dependency in this slot in s,
or Y w

i = (Xw
i)∗ if there is a net with several outgoing dependen-

cies
and at least one net with no outgoing dependency in this slot,
or finally, Y w

i = (Xw
i)+ if there is always more than one outgoing

dependency and there is at least one net with several outgoing
dependencies
in this slot. Besides this, \i is \ (respectively, /i is /).
.Y w

i is #(↙Xw
i) (resp. #(↘Xw

i)) if the left
(respectively, right) slot is the end of an anchored dependency.
.Y w

i is ↖Xw
i (respectively, ↗Xw

i) if the left
(respectively, right) slot is the beginning of a distant dependency.
.Y w

i is ↙Xw
i (respectively, ↘Xw

i) if the slot
is the end of a left (respectively, right) loose distant dependency.

Theorem 20 φ1 learns rigid untyped dependency net grammars.

Proof: φ1 is monotonic: if s1 ⊆ s2 then
φ1(s2) returns a failure or φ1(s1) and
φ1(s2) succeeds and
UNL(φ1(s1)) ⊆ UNL(φ1(s2)).
This is a consequence of the fact that the equality system corre-

sponding
to s1 is a subset
of the equality system corresponding to s2.
Let G be a rigid CDG and (Ni)i∈N be an infinite sequence of
untyped dependency nets that enumerates UNL(G). For i ∈ N ,
φ1(N0, . . . , Ni) does not return a failure because G is
rigid so there exists a way to assign a unique type to each word in

the
untyped dependency nets of UNL(G). Because φ1 is monotonic,
(Gi = φ1(N0, . . . , Ni))i∈N defines an infinite sequence
of growing languages UNL(G0) ⊆ UNL(G1) ⊆ · · · .
The property of finite elasticity implies that this sequence must
converge to a language L∞ that must be (equal or) a superset of
UNL(G) since the sequence enumerates
UNL(G). In fact, for i ∈ N , G
verifies the equality system used by φ1 with
N0, . . . , Ni as input, so

14 / Béchet, Dikovsky, Foret and Erwan Moreau

UNL(φ1(N0, . . . , Ni)) ⊆ UNL(G).
Thus, we also have L∞ ⊆ UNL(G) and the sequence of lan-

guages converges. Because if G1 and G2 are two grammars such that
G1 ⊆ G2 and UNL(G1) = UNL(G2) that are reduced with respect
to UNL(G1) = UNL(G2) then G1 = G2: the sequence of grammars
converges.

1.6 k-valued CDGs without optional or iterative
category are learnable from strings

We can define a finite-valued relation between the set of untyped de-
pendency nets that are images of a k-valued CDG through L. The class
of rigid untyped dependency net languages having finite elasticity, we
can apply Theorem 14 and see that k-valued CDGs without optional
or iterative categories are learnable from strings. In fact, we define two
relations and use Theorem 14 twice: first time from rigid untyped de-
pendency net languages to rigid string languages, and the second time
from rigid string languages to k-valued string languages.

Lemma 21 String languages of rigid CDG without optional or itera-
tive categories have finite elasticity.

Proof: Given any string x = w1 . . . wn, the maximum number of de-
pendencies drawn over x is 2n − 2, because there is at most one local
or distant dependency and one anchored dependency coming in each
word (except the main word). Given any untyped dependency net and
any node in this dependency net, all slots are connected to at least one
dependency. Therefore there exists a finite number of untyped link de-
pendency nets corresponding to a string x. The class of rigid untyped
link dependency nets has finite elasticity, so by theorem 14 the class
of rigid CDG string languages without optional or iterative categories
also has finite elasticity.

Lemma 22 k-valued CDGs without optional or iterative category have
finite elasticity.

Proof: This is very standard. The finite-valued relation associates k-
valued CDG over W and rigid CDG over W ×{1, . . . , k}. A rigid CDG
over W ×{1, . . . , k} corresponds to the k-valued CDG where the types
associated to (a, 1), . . . , (a, k) are merged into the same entry for a.

1.7 Conclusion and perspectives

We have proved that a class of rigid and k-valued non-projective DGs
has finite elasticity and so is learnable from strings and we have ob-
tained some unlearnability results, as summarized below.

References / 15

Class
Learnable

from strings
Finite elasticity

on strings
Finite elasticity
on structures

Finite-valued
relation

A∗ no ⇒ no yes ⇒ no
A? no ⇒ no yes ⇒ no
A+ yes ⇐ yes ⇐ yes yes

The positive results may be compared to other learnability results in
the same domain in particular in the field of k-valued categorial gram-
mars. For instance, Kanazawa’s positive result on classical categorial
grammars corresponds to the learnability of the subclass of projective
CDGs. On the other hand, some more complex but rather close sys-
tems like rigid Lambek calculus or pregroups have been proved to be
not learnable from strings Foret and Le Nir (2002a,b). One of possible
reasons of this effect might be that - in contrast with the CDGs - in
these classes of grammars, reasoning from strings, one can not bound
the number of “interactions” (axiom links in terms of proof nets) be-
tween two words. This remark may lead to other learnable classes of
logical categorial grammars laying between classical categorial gram-
mars and Lambek calculus.

References

Bechet, Denis. 2003. k-valued link grammars are learnable from strings. In
Proccedings of the 8th conference on Formal Grammar (FGVienna).

Besombes, Jérôme and Jean-Yves Marion. 2001. Identification of reversible
dependency tree languages. In L. Popeĺınský and M. Nepil, eds., Pro-
ceedings of the 3d Workshop on Learning Language in Logic, pages 11–22.
Strasbourg, France.

Buszkowski, Wojciech and Gerald Penn. 1989. Categorial grammars deter-
mined from linguistic data by unification. Tech. Rep. TR-89-05, Depart-
ment of Computer Science, University of Chicago.

Dikovsky, Alexander. 2004. Dependencies as categories. In G.-J. Kruiff
and D. Duchier, eds., Proc. of Workshop “Recent Advances in Dependency
Grammars”. In conjunction with COLING 2004 . Geneva, Switzerland.

Foret, Annie and Yannick Le Nir. 2002a. Lambek rigid grammars are not
learnable from strings. In COLING’2002, 19th International Conference
on Computational Linguistics. Taipei, Taiwan.

Foret, Annie and Yannick Le Nir. 2002b. On limit points for some variants
of rigid lambek grammars. In ICGI’2002, the 6th International Collo-
quium on Grammatical Inference, no. 2484 in Lecture Notes in Artificial
Intelligence. Springer-Verlag.

Gaifman, Häım. 1961. Dependency systems and phrase structure systems.
Report p-2315, RAND Corp. Santa Monica (CA). Published in: Informa-
tion and Control, 1965, v. 8, n 3, pp. 304-337.

16 / Béchet, Dikovsky, Foret and Erwan Moreau

Kanazawa, Makoto. 1998. Learnable classes of categorial grammars. Stud-
ies in Logic, Language and Information. FoLLI & CSLI. distributed by
Cambridge University Press.

Lombardo, Vincenzo and Leonardo Lesmo. 1996. An earley-type recognizer
for dependency grammar. In Proc. 16th COLING, pages 723–728.

Mel’cuk, I. 1988. Dependency Syntax: Theory and Practive. State University
of New York Press.

Moreau, Erwan. 2001. Apprentissage des grammaires catgorielles et de dpen-
dances. Master’s thesis, Université de Nantes, France. (in French).

Motoki, Tatsuya, Takeshi Shinohara, and Keith Wright. 1991. The correct
definition of finite elasticity: Corrigendum to identification of unions. In
The fourth Annual Workshop on Computational Learning Theory , page
375. San Mateo, Calif.: Morgan Kaufmann.

Shinohara, T. 1990. Inductive inference from positive data is powerful. In
The 1990 Workshop on Computational Learning Theory , pages 97–110.
San Mateo, California: Morgan Kaufmann.

Shinohara, T. 1991. Inductive inference of monotonic formal systems from
positive data. New Generation Computing 8 (4):371–384. Special Issue on
Algorithmic Learning Theory for ALT’90.

Sleator, D. and D. Temperley. 1993. Parsing English with a link grammar.
In Third International Workshop on Parsing Technologies.

Wright, K. 1989. Identifications of unions of languages drawn from an iden-
tifiable class. In The 1989 Workshop on Computational Learning Theory ,
pages 328–333. San Mateo, Calif.: Morgan Kaufmann.

2

Learning Dependency Languages

from a Teacher
Jérôme Besombes and Jean-Yves Marion

We investigate learning dependency grammar from partial data and
membership queries as a model of natural language acquisition. We
define a learning paradigm based on a dialogue between the learner
and a referent who knows the target language. This dialogue consists
in a presentation of structured partial sentences and queries about the
membership of original sentences constructed by the learner. We define
an efficient algorithm corresponding to this paradigm and illustrate it
on examples.

2.1 Introduction

For the definition of our model we consider several hypotheses which
are largely inspired by the works of the linguist Chomsky Chomsky
(1986) the psycholinguist Pinker Pinker (1994). First, the child learns
the language of his parents or more specifically, the language he hears.
Correct sentences are so presented to the learner, possibly partially un-
derstood and constitute the input data of the model. These data are
not only linear sentences but pre-calculated structures. Indeed, seman-
tic information or prosody are information included in the signal

The structures are commonly considered as tree in which nodes are
labelled by the words of the sentence. Since the linear order of the
words is conserved during the structuration process, we will consider
dependency trees as a relevant model of the input data (Figure 1).

Pinker underlines that the learner and the referent take part in a

17

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

18 / Jérôme Besombes and Jean-Yves Marion

the < rabbit < runs < fast +

runs

rabbit

the

fast

︸ ︷︷ ︸

linear order
︸ ︷︷ ︸

tree structuration

=

the rabbit runs fast

FIGURE 1 Dependency structure

Natural learning properties Algorithmic model properties
Finite set of correct sentences Input data are a finite set

are needed of partial positive examples
Chomsky’s universal grammar Learning algorithm independent

of a particular language
Structured data Dependency tree languages

Communication with a referent Membership queries

FIGURE 2 Correspondance between properties of the natural language
aquisition and properties of the algorithmic model

communication process; this communication is a key point of the learn-
ing process since it turns out that the language acquisition is not pos-
sible with no physical presence of the referent. If we suppose that a
new sentence produced by a child and not understood by the referent
can provide the conclusion that this sentence is not correct (doesn’t be-
long to the language he learns), we will take into account membership
queries: the algorithm submits sentences to an Oracle who replies yes
or no whether they belongs to te target language or not.

The algorithm A learns a class of language if and only if, for any
language L in the class, there is a finite set of partial data RS (rep-
resentative sample) such that A determines L from RS with help of
membership queries. Properties of A are summerized in Figure 2

Learning Dependency Languages from a Teacher / 19

Related works

Angluin first introduced the paradigm of learning with queries in An-
gluin (1987) for the case of regular languages and in Angluin (1988)
is studied a paradim of learning from positive examples, member-
ship queries and equivalence queries (the possibility to ask an Oracle
whether a guess language corresponds to the target language or not).
Obviously, for our motivation of modelling, this kind of queries are
not relevant. Angluin’s works have been extendend in particular by
Sakakibara Sakakibara (1987b,a, 1990) for the inference of context-free
grammars from structured data. The learnability of dependency lan-
guages has been studied in Besombes and Marion (2002); in this work,
an algorithm for a sub-class of lexical dependency languages has been
defined. As far as we know, the idea of learning from partial data and
membership queries is original.

2.2 Lexical dependency grammar

Following Dikovsky and Modina Dikovsky and Modina (2000), we
present a class of projective dependency grammars which was intro-
duced by Hays Hays (1961) and Gaifman Gaifman (1965).

A lexical dependency grammar (LDG) Γ is a quadruplet 〈Σ, N, P, S〉,
where:

. Σ is the set of terminal symbols,

. N is the set of non-terminal symbols,

. S ∈ N is the start symbol,

. P is the set of productions.

Each production is of the form

X→X1 . . . Xp a Xp+1 . . . Xq

or of the form

X → a1

where X and each Xi are in N and a in Σ. The terminal symbol a is
called the head of the production. In other words, the head is the root
of the flat tree formed by the production right handside. Actually, if
we forget dependencies, we just deal with context free grammars.

Given a grammar G, partial dependency trees t generated by a non-
terminal X of G are recursively defined as follows.

. X is a partial dependency tree.

1This form is corresponding to the previous with p = q = 0.

20 / Jérôme Besombes and Jean-Yves Marion

. If . . . X ′ . . . b . . . is a partial dependency tree generated by X ,

and if X ′ → X1 . . . Xp a Xp+1 . . . Xq is a production of G, then

. . . X1 . . . Xp a Xp+1 . . . Xp . . . b . . . 2 is a partial dependency tree

generated by X .

We note X
∗
→ t to express that t is generated by X .

A dependency tree generated by a non-terminal X is a partial de-
pendency tree generated by X in which all nodes are terminal sym-
bols. A dependency tree is a dependency sub-tree generated by S. The
language DL(G) is the set of all dependency trees (DL(G) = {d :

dependency tree and S
∗
→ d}).

(1) Example. Consider the grammar G defined by:

G = 〈Σ, N, P, S〉

where
.Σ = {a, b, c},
.N = {S, X1, X2, X3, X4},
.P is the following set of productions.

S → X2 a X3

X2 → X1 b X3 → c X4

X1 → X2 b X3 → c

X1 → b X4 → c X3

The language DL(G) is the set of dependency trees

{b . . . b a c . . . c}
︸ ︷︷ ︸

n even
︸ ︷︷ ︸

m odd
2Dependencies can be drawn either over or under the word line for a reason of

clearity.

Learning Dependency Languages from a Teacher / 21

A subtree of a dependency tree is inductively defined as follows:

. of d = a for a terminal symbol a, then d is the only subtree of d,

. if d = d1 . . . dp a dp+1 . . . dq is a dependency tree then:
. d is a subtree of d,
. any subtree of di is a subtree of d.

If d is a dependency tree, S(d) is the set of subtrees of d and if D is a set
of dependency trees, S(D) is the set of all subtrees of the elements of D.
A context c[]] of a dependency tree d is obtained by replacing exactly
one occurence of a subtree of d by a special symbol]. In particular]

is a context of all dependency trees. If d is a dependency tree, C(d) is
the set of contexts of d and if D is a set of dependency trees, C(D) is
the set of all contexts of the elements of D.

We will also use the notation d = c[d′] to express that d′ is a subtree
of d.

A grammar homomorphism φ between two grammars G = 〈Σ, N, P, S〉
and G′ = 〈Σ, N ′, P ′, S′〉 is defined from a surjective mapping from N

to N ′ which satisfies the following properties:

. φ(S) = S′

. P ′ is the set of productions φ(X) → φ(X1) . . . φ(Xp) a φ(Xp+1) . . . φ(Xq)

for every production X → X1 . . . Xp a Xp+1 . . . Xq of P .

We note G′ = φ(G) and in this case we have DL(G) ⊆ DL(G′).

2.3 Observation table

Following Angluin Angluin (1988), information obtained from the mem-
bership queries is stored in a table. Let DL be a dependency language,
D a finite set of subtrees and C a finite set of contexts. The observation

table T = TDL(S(D), C) is the table defined by:

. rows are labelled by the subtrees of D,

. columns are labelled by elements of C,

. cells TDL(d, c[]]), where d ∈ S(D) and c[]] ∈ C, are labelled with 1

and 0 in such a way that:

TDL(d, c[]]) =

{
1 if c[d] ∈ DL
0 otherwise

22 / Jérôme Besombes and Jean-Yves Marion

For any d ∈ S(D), we denote by rowT (d) the binary word corre-
sponding to the reading from left to right of the row labelled by d in
T .

(2) Example. Let be DL = DL(G) the dependency language defined

in Example 1, D the singleton {b b a c c c} and C the set of

contexts {],] b a c c c,] a c c c, b b a c c], b b a c], b b a]}.

The corresponding observation table T = TDL(S(D), C) is the
table of figure 2.

An observation table T = TDL(S(D), C) is coherent if and only if
for any pair (d, d′) of trees in D×D, rowT (d) = rowT (d′). A coherent
observation table T = TDL(S(D), C) defines a grammar GT :

GT = 〈Σ, N, P, S〉

where:

. Σ is set of symbols occuring in D,

. N = {rowT (d) : d ∈ S(D)}

. S = rowT (d) for any dependency tree d ∈ D

. P is the set of productions of the form rowT (d1 . . . dp a dp+1 . . . dq)

→ rowT (d1) . . . rowT (dp) a rowT (dp+1) . . . rowT (dq)

for all d1 . . . dp a dp+1 . . . dq in S(D).

(3) Example. The table of Example 2 is coherent and the correspond-
ing grammar is φ(G), where G is the grammar given in Example 1
and φ the homomorphism defined by φ(S) = 100000, φ(X1) =
010000, φ(X2) = 001000, φ(X3) = 000101, φ(X4) = 000010.

A coherent table T = TDL(S(D), C) is consistent if and only if for ev-

ery dependency trees d =d1 . . . dp a dp+1 . . . dq and d′ =d′1 . . . d′p a d′p+1 . . . d′q

Learning Dependency Languages from a Teacher / 23

]] b a c c c] a c c c b b a c c] b b a c] b b a]

b b a c c c 1 0 0 0 0 0

b b 0 0 1 0 0 0

b 0 1 0 0 0 0

c c c 0 0 0 1 0 1

c c 0 0 0 0 1 0

c 0 0 0 1 0 1

FIGURE 3 An observation table

24 / Jérôme Besombes and Jean-Yves Marion

in S(D), for all i, rowT (di) = rowT (d′i) implies that rowT (d) =
rowT (d′).

2.4 Representative sample

We now define the property, for a finite set of subtrees of a language,
to contain the minimum information necessary to explicitely iden-
tify this language. This constitutes a minimal hypothesis to conclude
in the learnability of the language. Let DL be a dependency lan-
guage generated by a grammar G. Any finite subset RS of S(DL)
is said to be representative for DL if and only if for any transi-

tion X → X1 . . .Xp a Xp+1 . . . Xq of G, there is an element d =

d1 . . . dp a dp+1 . . . dq in S(RS) such that for all i, Xi
∗
→ di. Infor-

mally, a finite set RS is a representative sample for G if and only
if each production of G has been used at least once to produce the
elements of RS.

Lemma 1 Let G be a dependency grammar, RS a representative sam-

ple for DL(G) and C a finite set of contexts containing C(RS), if

TDL(G)(S(RS), C) is consistent then DL(GT) = DL(G).

Theorem 2 The algorithm defined in Figure 4 learns the class of

dependency languages from representative samples and membership

queries.

The algorithm works as follows: it take a finite set of dependency
trees as input and this set is decomposed in a finite set of subtrees and
a finite set of contexts. With help of membership queries, a first obser-
vation table is constructed and the consistence is checked. If the table
is not consistent, new contexts are calculated and added in the table
which is then completed. The process stops as the table is consistent
and a grammar is then ouput.

2.5 Examples

(4) Example. The singleton {b b a c c c} is a representative sample

for the dependency tree language defined in Example 1. The
observation table of Figure 3 is constructed from this input with
help of membership queries; this table is consistent that implies

Learning Dependency Languages from a Teacher / 25

INPUT: a finite set of dependency trees D

INITIALIZATION: C = C(D); construct T = TDL(G)(S(D), C) with
help of queries
WHILE T not consistent DO

find two dependency trees d =d1 . . . dp a dp+1 . . . dq and

d′ =d′1 . . . d′p a d′p+1 . . . d′q
in S(D) such that forall i, rowT (di) = rowT (d′i) and

rowT (d) 6= rowT (d′)

add every contexts d1 . . .] . . . dp a dp+1 . . . dq and

d1 . . . dp a dp+1 . . .] . . . dq in C

complete T = TDL(G)(S(D), C) with help of queries
ENDWHILE
RETURN GT

FIGURE 4 The learning algorithm

that the corresponding dependency grammar given in Example 3
is computed by the algorithm and the language is learnt imme-
diately (the loop is not processed).

The following example illustrates the iterative behavior of the algo-
rithm.

(5) Example. Let G be the following grammar:

S → aX1, aX2, bX2

X1 → dX3, c X3 → e

X2 → dX4 X4 → f

We have: DL = {b c, a c, a d e, b d e, a d f}.

26 / Jérôme Besombes and Jean-Yves Marion

Let now consider the following representative sample:

RS = {b c, a d e, d f}

From it, the algorithm constructs a first table that is not consis-
tent (Figure 5). Indeed we have:

rowT (e) = rowT (f)

but

rowT (d e) 6= rowT (d f)

The new context b d] is computed and added to the table that
is completed with queries. The table obtained is then consistent
and the process stops with the construction of de grammar φ(G),
where φ is defined by φ(S) = 10000, φ(X1) = 01010, φ(X2) =
00010, φ(X3) = 00101, φ(X4) = 00100

References

Angluin, D. 1987. Learning regular sets from queries and counter examples.
Information and Control 75:87–106.

Angluin, D. 1988. Queries and concept learning. Machine learning 2:319–342.

Besombes, J. and J.Y. Marion. 2002. Apprentissage des langages réguliers
d’arbres et applications. Conférence d’Apprentissage, Orléans 17, 18 et 19

juin 2002 pages 55–70.

Chomsky, N. 1986. Knowlege of Language. Praeger, New York.

Dikovsky, A. and L. Modina. 2000. Dependencies on the other side of the
curtain. Traitement automatique des langues 41(1):67–96.

Gaifman, H. 1965. Dependency systems and phrase structure systems. In-

formation and Control 8(3):304–337.

Hays, D.G. 1961. Grouping and dependency theories. In National symp. on

machine translation.

Pinker, S. 1994. The language instinct . Harper.

Sakakibara, Y. 1987a. Inductive inference of logic programs based on alge-
braic semantics. Tech. Rep. ICOT, 79.

Sakakibara, Y. 1987b. Inferring parsers of context-free languages from struc-
tural examples. Tech. Rep. ICOT, 81.

Sakakibara, Y. 1990. Learning context-free grammars from structural data
in polynomial time. Theoretical Computer Science 76:223–242.

References / 27

] b] a d] a]

b c 1 0 0 0

c 0 1 0 1

a d e 1 0 0 0

d e 0 1 0 1

d f 0 0 0 1

e 0 0 1 0

f 0 0 1 0

⇓

] b] a d] a] b d]

b c 1 0 0 0 0

c 0 1 0 1 0

a d e 1 0 0 0 0

d e 0 1 0 1 0

d f 0 0 0 1 0

e 0 0 1 0 1

f 0 0 1 0 0

FIGURE 5 The learning algorithm processing

3

An integrated approach to French

liaison
Olivier Bonami, Gilles Boyé, Jesse Tseng

Consonant liaison at word boundaries in French is the result of a com-
plex interplay of grammatical and extragrammatical factors. In this
paper we offer a descriptive overview of syntactic factors influencing
liaison. We provide a detailed analysis in the framework of HPSG, that
integrates the morphophonological and syntactic conditions governing
this feature of French grammar. Although we do not directly model
other factors influencing liaison (such as frequency effects, prosodic con-
siderations, or sociolinguistic variables) our analysis is modular enough
to accommodate additional conditions resulting from more complete
empirical studies.1

3.1 A descriptive overview of liaison

Many French words come in two shapes, which we will refer to as the
“short form” and the “long form”.2 The short form is always used before
consonants and in utterance-final position; the long form is used, in
some cases, when the following word is vowel initial. The term liaison
refers to the realization of the long form in appropriate contexts.3

We separate two issues in the grammar of liaison: the identification of

1We thank Anne Abeillé, Elisabeth Delais-Roussarie, Danièle Godard and three
anonymous Formal Grammar referees for their comments and suggestions.

2By “words” we mean fully inflected lexical items, as opposed to lexemes or
paradigm headwords (which can correspond to many distinct surface forms).

3A few isolated words, such as six ‘six’, have two long forms, one for liaison
contexts ([siz]) and one for utterance-final position and certain other contexts ([sis]).

29

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

30 / Olivier Bonami, Gilles Boyé, Jesse Tseng

the contexts where liaison is possible and the relationship between short
and long forms. In the simplest cases of short/long form alternation, the
long form is just the short form with an additional, so-called “latent”
final consonant. For instance, the adverb très ‘very’ has a short form
[tKE], found e.g. in très doué ‘very gifted’ [tKEdwe], and a long form
[tKEz] found e.g. in très intelligent ‘very intelligent’ [tKEzẼtEliZÃ]. In
section 3.1.1 we restrict our attention to this basic type of short/long
form alternation, to examine the syntactic contexts where liaison is
possible and/or mandatory. We defer the examination of more unusual
short/long form pairs until section 3.1.2.

3.1.1 Syntactic contexts for liaison

Given a word w1 with distinct short and long forms and a following
vowel-initial4 word w2, liaison is observed to be obligatory (indicated
by w1 =w2), optional (indicated by w1◦w2), or impossible (indicated
by w1 6=w2). This is reflected in prescriptive manuals of French, which
include long, but rather arbitrary, lists of “correct” and “incorrect”
liaisons (Delattre, 1966, Fouché, 1959). Early formal approaches to li-
aison concentrated on finding appropriate generalizations about the do-
main of liaison. Selkirk (1972, 1974) suggests that the domains of obliga-
tory and optional (or “stylistically elevated”) liaison can be determined
by means of simple, cross-categorial rules referring to explicitly defined
notions like “phonological word” and “inflected lexical head”. Morin
and Kaye (1982), however, present many counterexamples to Selkirk’s
generalizations, and conclude that the status of liaison (obligatory, op-
tional, impossible) must more or less be stipulated on a construction-
by-construction basis. In later work, liaison has been used as a prime
argument for distinguishing syntactic constituency from prosodic con-
stituency: according to Selkirk (1986), obligatory and optional liaison
occur within two different kinds of prosodic constituents, determined
by applying an algorithm to syntactic structures that results in new
constituent boundaries. Later work has shown that obligatory liaison
is much more limited than the prosodic approach suggests (de Jong,
1994), and that liaison domains do not coincide with independently
identifiable prosodic domains (Post, 2000).

At the same time, many studies have emphasized the importance
of sociolinguistic factors in the realization of liaison (see Encrevé 1988
for a detailed discussion), the lexical conditioning of many liaison con-
texts (Tranel, 1981, de Jong, 1994, Morin, 1998) and the influence of
frequency (Bybee, 2001) or prosodic factors (Fougeron et al., 2001) on

4For the time being we ignore the problem of h aspiré; see section 3.2.1.

An integrated approach to French liaison / 31

the actual realization of liaison. Thus the current consensus is that
there is a wide variety of factors involved in liaison, and few (if any)
studies attempt to provide actual grammar fragments predicting the
contexts where liaison is realized.

Our goal in this paper is to present a grammar fragment that in-
coporates genuinely syntactic constraints on liaison realization. Using
observations taken from the previous literature and new evidence, we
outline an updated list of the contexts where syntax forces liaison or
makes it impossible. We assume that optional liaison is the default situ-
ation, and that specific syntactic environments make liaison impossible
or mandatory in particular cases.5

What follows is a survey of the main phrasal structures of French; in
anticipation of our formal analysis, we are guided by the description of
French phrase structure in HPSG of Abeillé and Godard (2000, 2002).

In subject-head combinations, liaison is impossible between the
daughters, irrespective of the head’s category (compare (1a) and (1b)).
Note that by contrast, liaison is obligatory between a weak form subject
pronoun and the verb (2). This is part of the motivation for analyzing
these pronouns as affixes on the finite verb rather than daughters in a
syntactic combination (Miller and Sag, 1997, Miller, 1992).

(1) a. [Les enfants6=ont mangé].
‘The children have eaten.’

b. [Les enfants6=au lit], on servit le dessert.
(With) the children in bed, dessert was served.’

(2) [Ils=étaient contents].
‘They were happy.’

Liaison is obligatory between a specifier and the following head, as
shown in (3).6

(3) a. mon=ami
‘my friend’

5It is important to interpret “optionality” in this paper as the absence of any
synactic condition on the realization of liaison in a particular phrasal configuration.
Lexical and other factors typically intervene to make liaison more or less likely in
specific instances of this configuration, even to the point of making it obligatory
or impossible. As a simple example, liaison is possible in enfants [z] intelligents
‘intelligent children’ but not in *enfant [t] intelligent ‘intelligent child’ ; it is nearly
always realized in très [z] intelligent ‘very intelligent’, while other adverbs in the
exact same structure give rise to liaison less systematically.

6Note that in our analysis of French, [Det N
′
] combinations are the only instances

of specifier-head combinations.

32 / Olivier Bonami, Gilles Boyé, Jesse Tseng

b. [mon=[ancien collègue]]
‘my former colleague’

Head-complement structures in French are uniformly head-initial,
and liaison is possible between the head and the first complement (4).
There may be several complement daughters; liaison is only possible
between a “lite” complement and a following complement (5a,b). Lite
elements include the pronouns tout and rien and past participles in
compound tenses (Abeillé and Godard, 2000, 2002). Other comple-
ments cannot give rise to liaison (6).7

(4) a. Paul [pensait◦à Marie].
‘Paul was thinking about Marie.’

b. [dans◦une semaine]
‘in one week’s time’

(5) a. Paul [donnera tout◦à Marie].
‘Paul will give everything to Marie.’

b. Paul [a été mis◦à pied].
‘Paul has been put on suspension.’

(6) Jean [présentera ses enfants6=à Marie].
‘Jean will introduce his children to Marie.’

In head-adjunct combinations, liaison is generally possible between
the head daughter and the adjunct daughter, which exhibit both pos-
sible word orders (7).

(7) a. [amis◦intimes]
‘close friends’

b. [très◦intéressant]
‘very interesting’

c. [bien◦équipé]
‘well equipped’

Prenominal attributive adjectives deserve special attention. It is tra-
ditionally assumed that liaison is obligatory between a prenominal ad-
jective and the noun (e.g., petit enfant ‘small child’), while it is op-
tional between the noun and a postnominal adjective (7a). However
Post (2000) provides decisive evidence that while liaison is more fre-
quent prenominally, it is in fact optional in both cases (see Morin and

7Modifying adverbs realized among complements in the VP may give rise to
liaison (even when they are not lite), as noted by Morin and Kaye (1982). We leave
these aside since their status (adjunct vs. complement) is controversial.
Remember that we assume that pronominal clitics are affixes, not words; thus clitic
liaison is a lexical phenomenon which falls outside of the scope of this paper.

An integrated approach to French liaison / 33

Kaye (1982) and de Jong (1994) for earlier hints to this effect). In a
reading task, Post observed that subjects realized liaison only 88% of
the time with plural prenominal adjectives. This is especially significant
since (i) liaison is more often realized in reading than in conversation
(Fougeron et al., 2001), and (ii) the liaison rate is highly dependent
on the choice of the noun and the adjective (falling to 61% for certain
pairs), a situation typical of optional liaison contexts. We thus conclude
that attributive adjectives conform to the general case of head-adjunct
combinations, where liaison is not obligatory but only quite frequent.8

Liaison in filler-head combinations seems to be impossible (8a,b).
Apparent counterexamples are predicative quel(le)s, which exhibits
obligatory liaison (8c), and dont, with which liaison is optional (8d).
But independent evidence shows that these items are not fillers: Co-
morovski (to appear) argues that predicative quel is a clitic combining
directly with the verb; and obligatory liaison is just what we expect
if quel combines with the verb in the lexicon. Dont is arguably a
complementizer rather than a wh-word, since it does not give rise to
pied-piping (9), and (ii) it cannot be followed by the complementizer
que in varieties that allow this with wh-items (10); thus dont relatives
are head-complement structures, and liaison is expected to be optional.

(8) a. Quelles tartes 6=ont-ils mangées ?
‘Which pies did they eat?’

b. les enfants [auxquels6=elle a parlé]
‘the children to whom she spoke’

c. Quels [z] étaient les enjeux ?
‘What were the issues at stake?’

d. l’homme dont◦il a parlé
‘the man he spoke about?’

(9) a. Voilà l’homme au frère de qui j’ai parlé.
‘Here is the man to whose brother I spoke.’

b. *Voilà l’homme au frère dont j’ai parlé.

(10) a. % Voilà l’homme à qui que j’ai parlé.
‘Here is the man I spoke to.’

b. *Voilà l’homme dont que j’ai parlé.
‘Here is the man I spoke about.’

8Note that Post provides data only for plural prenominal adjectives; in the ab-
sence of relevant evidence we suppose that the same situation holds in the masculine
singular.

34 / Olivier Bonami, Gilles Boyé, Jesse Tseng

In coordinations, liaison is generally possible between the penulti-
mate conjunct and the conjunction (11a) and between the conjunction
and the final conjunct (11b). However, when there are more than two
conjuncts, liaison is impossible between adjacent conjuncts (11c).

(11) a. [petits◦et grands]
‘small and large’

b. [gentil mais◦idiot]
‘nice but dumb’

c. livres [petits6=ab̂ımés◦et chers]
‘small, damaged, and expensive books’

Coordination reveals some previously overlooked liaison data. As we
have just seen, liaison is in general optional before a conjunction, and so
we can use coordination to identify further constraints associated with
the right edge of particular phrasal combinations. For example, liai-
son remains possible when the conjunct preceding the conjunction is a
specifier-head (12) or adjunct-head (13) combination (the last example
also illustrates optional liaison after a coordinated structure).

(12) [les amis]◦et les collègues de Marie
‘Marie’s friends and colleagues’

(13) [[très bien]◦et très chaleureusement]◦accueilli
‘very well and very warmly received’

What is more surprising is that liaison is blocked when the conjunct
is a subject-head (14), filler-head (15), or head-complement (16) com-
bination (note that liaison is blocked even when the final complement
is lite).This suggests that phrase types constrain the possibility of liai-
son not only between their daughters, but also between the phrase as
a whole and following material.9

(14) [Paul dormait]6=et Marie travaillait.
‘Paul was sleeping and Marie was working.’

(15) [Qui dormait]6=et qui ne dormait pas ?
‘Who was sleeping and who wasn’t?’

(16) a. Paul doit [acheter ces livres] 6=ou les emprunter.
‘Paul must buy those books or borrow them.’

b. impressionné [par les arguments]6=et par les exemples
‘impressed by the arguments and by the examples’

9The constraints on filler-head and subject-head combinations probably follow
from a more general constraint against liaison between a clause and the following
material. Such a constraint is necessary to block liaison after a single-word clause:
Sortez 6=et restez dehors ! ‘Get out and stay out!’

An integrated approach to French liaison / 35

c. les [femmes de marins]6=et leurs amants
‘sailors’ wives and their lovers’

d. Paul était [fier de tout]6=et enthousiasmé par n’importe quoi.
‘Paul was proud of everything and enthusiastic about just
anything.’

3.1.2 The shape of the long form

As we stated above, for most words exhibiting a liaison alternation, the
long form is identical to the short form except that it contains an extra
final consonant. In many cases, the same consonant is also relevant for
morphological processes. For instance, the masculine singular adjective
petit ‘small’ has a long form [p@tit] that ends in [t] just like the feminine
singular form of the same adjective petite [p@tit]. The same consonant
shows up in derived words such as petitesse ‘smallness’ [p@titEs], where
the derivational suffix is [Es]. This type of data motivates the traditional
idea that French phonological representations may contain a final “la-
tent” consonant which shows up only when followed by material in the
same word or at word boundaries where liaison is realized. Determin-
ing the shape alternation in these cases is a question of realization vs.
non-realization of the latent consonant.

Although it is clear that the notion of latent consonant has some
role to play in the grammar of French, it is important to make a clear
distinction between the presence (or absence) of a latent consonant and
the possibility (or impossibility) of liaison. First, singular nouns never
give rise to liaison, despite the fact that some of them do have a latent
consonant that is relevant morphologically (e.g., dent ‘tooth’ is realized
as [dÃ] in all contexts, but is the base for the derived words dentaire
[dÃtEK] ‘dental’ and dentiste [dÃtist] ‘dentist’). Thus the lexical repre-
sentation of a word may include a latent consonant that is not involved
in liaison.

Second, and more importantly, prenominal masculine singular adjec-
tives may have a long form that is not related in this simple way to the
corresponding short form. Three adjectives (vieux ‘old’, beau ‘beauti-
ful’, and nouveau ‘new’) have a masculine singular long form phonolog-
ically identical to the feminine form of the adjective (resp. [vjEj], [bEl],
and [nuvEl]) but quite distinct from the masculine singular short form
(resp. [vjø], [bo], and [nuvo]).10 A dozen adjectives have a masculine
singular long form whose final consonant is distinct from the one found
in the feminine or in derived words (e.g., gros ‘big’, masculine singular

10The adjectives mou ‘soft’ and fou ‘crazy’ are usually also cited in this context,
but their long forms have fallen out of use in contemporary French, except in a few
fixed expressions.

36 / Olivier Bonami, Gilles Boyé, Jesse Tseng

short form [gKo], masculine singular long form [gKoz], feminine singu-
lar [gKos], typical derived noun: grosseur ‘bigness’ [gKosœK]).11 Finally,
many adjectives are simply not possible in the masculine singular be-
fore a noun triggering liaison (Miller, 1992, Morin, 1998). A typical
example is chaud :

(17) a. une ambiance chaude / une chaude ambiance
‘a lively atmosphere’

b. un débat chaud / un chaud débat
‘a lively debate’

c. un entretien chaud / *un chaud entretien
‘a lively discussion’

Prenominal position introduces a stilted stylistic effect for many ad-
jectives, making liaison judgments difficult to evaluate. It is clear, how-
ever, that chaud is not an isolated case. Dozens of other adjectives have
the same curious property of simply not having an acceptable masculine
singular prenominal liaison form.

The data just discussed show that for the case of prenominal ad-
jectives in the masculine singular, the relationship between short and
long forms can involve more than just the realization or non-realization
of a latent consonant. To account for this data, we assume that the
paradigm of French adjectives contains an extra slot for the masculine
singular prenominal liaison form (Bonami and Boyé, 2003). This form
is identical to the feminine singular form by default; thus when the fem-
inine singular is suppletive (as in the cases of vieux/vieille, beau/belle,
nouveau/nouvelle discussed above), the masculine singular long form is
identical to the feminine form, not the masculine singular short form.
The default identity with the feminine singular is overridden in the case
of gros and similar adjectives. Finally adjectives like chaud are simply
defective—this lexeme is missing one of its inflectional forms.

To sum up, the relation between the short and long forms of a word
can be determined by one of two factors: either the word has a latent
consonant and the long form is the short form with the latent consonant
realized at the end, or the short and long forms occupy distinct slots in

11The masculine singular long form of these adjectives is sometimes taken to be
derived from the feminine singular by a phonological process turning [s] into [z] and
[d] into [t] (Steriade, 1999). However this process would affect a non-natural class
of segments, perform totally opposite operations on them (voicing vs. devoicing),
and affect just a few lexical items sharing the same category and morphosyntactic
features in a syntactically defined environment—and even then, not fully produc-
tively (for example, chaud ‘hot’ and froid ‘cold’ are never realized as *[Sot] and
*[fKwat]). In light of these properties of the phenomenon, a lexical treatment is
clearly preferable.

An integrated approach to French liaison / 37

the inflectional paradigm of the lexeme, and are related by inflectional
morphology.12

3.2 An HPSG analysis for optional liaison

In this section we outline the general analysis and show how it ap-
plies to optional liaison contexts; we defer discussion of obligatory and
impossible liaison to section 3.3.

3.2.1 Feature inventory

We introduce a number of new features to lexical and phrasal repre-
sentations in order to encode the morphophonological conditions and
effects of liaison.

(18)

sign →

left
[

ltrig boolean
]

right

[

lform boolean

app list(segment)

]

First, a boolean-valued attribute liaison-trigger indicates whether
a word (potentially) licenses liaison to its left. Consonant-initial words
(like doué in très doué) carry the feature [ltrig −], except when the
consonant is a glide ([j], [w], [4]). In that case both possibilities exist:
some words are [ltrig +] (mes [z] yeux ‘my eyes’, des [z] oiseaux
‘birds’, belles [z] hûıtres ‘beautiful oysters’), others are [ltrig −] (*les
[z] hiéroglyphes ‘hieroglyphics’, *bon [n] week-end ‘good weekend’, *des
[z] huées ‘jeers’). Vowel-initial words (e.g., intelligent, ami, à, et) are
typically [ltrig +], but there are exceptions too. So-called “h aspiré”
words are (phonetically) vowel-initial, but they must be lexically speci-
fied as [ltrig −] because they fail to trigger liaison: *curieux [z] hasard
‘funny coincidence’, *tes [z] onze enfants ‘your eleven children’.

Next, two features are needed for representing liaison target status.
The feature appendix encodes the latent consonant (for both the liai-
son alternation and morphological derivation); thus a word such as très
has a [z] in its app, relevant for liaison, and the noun dent has a [t],
relevant only morphologically. Of course many words simply have an
empty appendix, if there is no reason to postulate a latent consonant.

The feature liaison-form indicates whether or not a word realizes
liaison—in other words, for a word with distinct long and short forms,

12The plural forms of adjectives also give rise to liaison, but in these cases the
shape alternation is systematically of the simple type, involving the latent consonant
[z]. Note also that there are four determiners (three possessives ma/mon, ta/ton,
sa/son, and the singular demonstrative ce/cet(te)) which give rise to lexically-
controlled alternations similar to those found with adjectives.

38 / Olivier Bonami, Gilles Boyé, Jesse Tseng

the lform value determines which one will be chosen as the phonolog-
ical realization of the word. For words with only one shape (e.g., femi-
nine singular adjectives), the value of lform has no consequence on the
phonology. All singular nouns are lexically specified as [lform −], so
that even though they may have a latent consonant in app (e.g., dent),
they do not have long forms in liaison contexts. Masculine singular ad-
jective forms are lexically specified as either [lform +] (e.g., vieil, bel)
or [lform −] (e.g., vieux, beau).13 Finally, words with distinct short
and long forms differing only in the realization or non-realization of a
latent consonant (e.g., très, plural adjectives and nouns), are lexically
underspecified for the feature lform. The contextually instantiated
value of the feature will determine whether the appendix is realized or
not (as explained in section 3.2.3).

3.2.2 Propagation

Up to now we have only seen how the attributes ltrig, lform, and
app operate in lexical entries. But since liaison can occur between words
that are not sisters in a local tree, we need to specify a mechanism for
the propagation of these features in syntactic combinations so that the
relevant liaison information is visible at the phrasal level. It is clear
that this propagation is not uniformly head-driven, or indeed driven
by any syntactic considerations; it depends only on the linear order
of the daughters. If the first word in a phrase is vowel-initial, then of
course the phrase itself is vowel-initial, and similarly if the last word
in a phrase is a long form that must appear in a liaison context, then
the phrase as a whole must appear in a liaison context. More formally,
a dominating phrase will always have the same liaison trigger status
(ltrig value) as its left-most daughter, and the same liaison target
status and latent consonant (lform and app) as its right-most daugh-
ter. Our liaison features can therefore be treated as “edge features”,
which have also been used for the formal analysis of phrasal affixes
in French (Miller, 1992, Tseng, 2003b), and in an earlier HPSG treat-
ment of liaison (Tseng, 2003a). The Edge Feature Principle (19) allows
feature propagation along the right and left edges of phrases.14

13These values are part of the morphosyntactic properties regularly associated
with the two relevant slots of adjectival paradigms; they are not stipulated word by
word.

14We adopt an encoding of phrase structure in the spirit of Sag et al. (2003),
whereby all daughters of a phrase (including the head daughter) are listed in
the dtrs value, which is the locus of linear precedence constraints. Note that
further work is needed to determine how the current analysis can be integrated
with linearization-based analyses of French syntax (see e.g. Bonami, Godard, and
Marandin, 1999).

An integrated approach to French liaison / 39

(19) Edge Feature Principle

a.
phrase →

left 1

dtrs
〈

[left 1]
〉

⊕ list(sign)

b.
phrase →

right 1

dtrs list(sign) ⊕
〈

[right 1]
〉

In combination with the feature geometry introduced in (18), liaison
information appears correctly on all phrasal signs. (20) illustrates the
percolation of features in a simple phrase.15

(20) amis intimes ‘close friends’:

l
[

ltrig 3 +
]

r

lform 4 bool

app 5

〈

z
〉

dtrs

〈

phon
〈

ami
〉

cat N

l
[

ltrig 3 +
]

r

lform bool

app
〈

z
〉

,

phon
〈

Ẽtim
〉

cat Adj

l
[

ltrig +
]

r

lform 4 bool

app 5

〈

z
〉

〉

3.2.3 Phonological realization

We still need to explain formally how the various combinations of values
of lform, ltrig, and app give rise to the characteristic phonological
aspects of the liaison alternation. We define a function dtrs-to-phon,
taking a list of signs and producing a list of phonological strings, for
this purpose.16

(21)
sign →

[

phon dtrs-to-phon(Σ)

dtrs Σ

]

15In this figure l abbreviates left and r abbreviates right. In later figures the
features left and right are omitted, since no ambiguity can arise. In addition, we
abbreviate cat values to traditional category labels (V, VP, S, etc.)

16For the sake of concreteness, we treat phonological representations as lists of
segment sequences, and we treat phonological combination as list concatenation.
This extremely simplified view of phonology is sufficient for our purposes.

40 / Olivier Bonami, Gilles Boyé, Jesse Tseng

The first clause of the definition (22) takes care of the realization
of liaison between two daughters in a phrase. If the first daughter is
a liaison form ([lform +]) and the next daughter is a liaison trigger
([ltrig +]), this clause adds both the phon value of the first daughter
and its app (latent consonant, if any) to the phonology of the phrase.
The recursive call to dtrs-to-phon specifies what must be done with the
phonology of the remaining daughter(s).

(22)

dtrs-to-phon

〈

phon 1

app 2

lform +

, 3 [ltrig +]

〉

⊕ Σ

= 1 ⊕ 2 ⊕ dtrs-to-phon
(

〈 3 〉 ⊕ Σ

)

The second clause of dtrs-to-phon (23) covers cases where liaison is
not realized after the first daughter. This daughter’s phon value is
incorporated into the phrasal phonology, its app value is ignored, and
dtrs-to-phon is called recursively to handle the rest of the list (which
must be non-empty). Note that this clause does not check the ltrig
status of the following daughter. This is in accordance with our decision
to treat optional liaison as the default situation: since liaison is optional
in the general case, the absence of liaison does not need to be licensed
by properties of the next daughter.

(23)
dtrs-to-phon

〈[

phon 1

lform −

]〉

⊕ Σ nelist(sign)

= 1 ⊕ dtrs-to-phon
(

Σ

)

Finally, the last sign of every phrase’s dtrs list is handled by clause
(24). No matter what the final sign’s lform value is, we simply add its
phon value to the phrasal phonology, without appending the app list,
and the calculation of the phrasal phonology terminates.17

17Of course, the right-most daughter of a phrase can be [lform +], and it can
have a non-empty app, but clause (24) ignores these features. The information is
not lost, however, because the phrase itself shares its lform and app values with
this right-most daughter, in accordance with the EFP (19). Consequently, when
this phrase combines with other material to form a larger phrase, it will appear
on a higher dtrs list, and its right-edge liaison features will either be taken into
account there (see e.g. example (30)), or they will continue to propagate to the next
higher phrase. We assume that complete utterances are always [lform −], so they
can never end with a liaison form (like vieil), and the formulation of dtrs-to-phon

ensures that a latent consonant is never realized at the end of a complete utterance
(i.e. maximal dtrs list).

An integrated approach to French liaison / 41

(24)
dtrs-to-phon

(〈[

phon 1

]〉
)

= 1

Going back to example (20), note that the value of lform on amis
is underspecified. Thus there are two possible outputs of dtrs-to-phon:
either amis is [lform +] and (22) applies, or it is [lform −] and (23)
applies. This situation is typical of optional liaison contexts.18

(25) a.

dtrs-to-phon

��� ��� phon 〈ami〉

lform +

app 〈z〉

� �� , 	 phon 〈Ẽtim〉

ltrig −
���� =〈ami,z,Ẽtim〉

b.

dtrs-to-phon

��� ��� phon 〈ami〉

lform −

app 〈z〉

� �� , 	 phon 〈Ẽtim〉

ltrig −
�� � =〈ami,Ẽtim〉

In the structurally identical case of (26), since the second element
on dtrs is [ltrig −], clause (22) cannot apply, and thus only one
realization (with no liaison) is possible.

(26) amis chers [amiSEK] ‘dear friends’:

phon dtrs-to-phon(1 , 2)=〈ami,SEK〉

ltrig 3 +

lform 4

app 5

〈

z
〉

dtrs

〈

1

phon
〈

ami
〉

cat N

ltrig 3 +

lform bool

app
〈

z
〉

, 2

phon
〈

SEK
〉

cat Adj

ltrig −

lform 4

app 5

〈

z
〉

〉

An important feature of the dtrs-to-phon function is that it decides
whether liaison occurs not on the basis of the content of the appendix,
but on the basis of the lform feature. Thus words with an empty
appendix can still be liaison forms licensed by clause (22) (prenominal

18Note that a property of our analysis is that the liaison consonant occurs as an
autonomous, unsyllabified element on the phon list. This leaves it to the phonology
proper to determine where the liaison consonant is syllabified, in accordance with
the well-known observation that both syllabifications (rightward and leftward) are
possible (Encrevé, 1988), and that pauses may occur on either side of the liaison
consonant (Morin and Kaye, 1982).

42 / Olivier Bonami, Gilles Boyé, Jesse Tseng

adjectives like vieil), and words with a non-empty appendix can fail
to give rise to liaison (e.g., dent) because they are [lform −]. More
generally, many (if not most) words both have an empty appendix and
are underspecified for the lform feature (e.g., frère, vrai, avec). For
these words, applying clause (22) (if allowed by the following dtrs
element) or (23) leads to exactly the same result.

3.3 Constraining liaison contexts

In accordance with the observations in section 3.1, we now provide an
account of contexts where liaison is obligatory or impossible. Remember
that since the formulation of dtrs-to-phon treats optional liaison as the
default case, nothing needs to be added to the grammar to account for
the optional cases.

3.3.1 Obligatory liaison

To account for obligatory liaison between specifier and head, we assume
that the lform feature of the specifier must be identical to the ltrig of
the head (27). This makes the realization of liaison entirely dependent
on the trigger status of the second daughter. As (28) illustrates, the
effect of this specification is that dtrs-to-phon can only produce one
result when the second daughter is [ltrig +], unlike in optional liaison
contexts (e.g., (20), (25))

(27) hd-spr-ph →

[

dtrs
〈

[lform 1],[ltrig 1]
〉]

(28) Obligatory liaison with latent consonant: mes amis [mezami]

hd-spr-ph

phon dtrs-to-phon(1 , 2)=〈 me, z, ami 〉

ltrig 3 −

lform 4

app 5 〈z〉

dtrs

〈

1

phon 〈me〉

cat Det

ltrig 3 −

lform 6 +

app 〈z〉

, 2

phon 〈ami〉

cat N

ltrig 6 +

lform 4

app 5 〈z〉

〉

3.3.2 Impossible liaison

We now turn to cases of impossible liaison. To block liaison in a par-
ticular context, it is sufficient to constrain the relevant sign to be

An integrated approach to French liaison / 43

[lform −]. We illustrate first with subject-head combinations. The
constraint in (29) forces both daughters in a head-subject phrase to be
[lform −]. Thus when we combine the NP in (28) with a VP, the head-
subj-ph type forces a [lform −] specification on the NP, irrespective of
the VP’s ltrig value. This is illustrated with an [ltrig +] VP in (30).
The [lform −] specification on the second daughter in (29) blocks li-
aison between the whole clause and a further constituent, even though
the clause has an appendix (which originates on the verb). This ac-
counts for the observation in (14) that there can be no liaison between
a subject-head combination and a following constituent.

(29) head-subj-ph →

[

dtrs
〈

[lform −],[lform −]
〉]

(30) Mes amis arrivent [mezamiariv] ‘My friends are coming’

hd-subj-ph

phon dtrs-to-phon(1 , 2)= 〈 me, z, ami, aKiv 〉

ltrig 3 −

lform 4 −

app 5 〈t〉

dtrs

〈

1

phon 〈me, z, ami〉

cat NP

ltrig 3 −

lform −

app 〈z〉

, 2

phon 〈aKiv〉

cat VP

ltrig +

lform 4 −

app 5 〈t〉

〉

Head-filler phrases are subject to a constraint exactly parallel to
that on head-subject phrases (31). For head-complement phrases, we
need to account for the fact that liaison is possible after the head and
lite complement daughters, but that it is impossible after nonlite com-
plements. The constraint in (32) licenses this behavior (assuming that
the head always left-most in head-complement structures in French).
In addition, the whole head-complement phrase is [lform −], block-
ing liaison to the right of the whole phrase, in accordance with the
observation in (16).

(31) head-fill-ph →

[

dtrs
〈

[lform −],[lform −]
〉]

(32) head-comps-ph →

lform −

dtrs 〈 [] 〉 ⊕ nelist
(

[weight lite] ∨ [lform −]
)

44 / Olivier Bonami, Gilles Boyé, Jesse Tseng

3.4 Conclusion

In this paper we provided both new data illustrating the syntactic
constraints on French liaison, and an HPSG grammar fragment that
accounts for the observed distribution of obligatory, optional, and im-
possible liaison.

The account is incomplete in that it does not consider non-syntactic
factors that make optional liaison more or less probable (in extreme
cases, almost mandatory or almost impossible). Two approaches can
be taken to integrate such data into the current analysis. One possibil-
ity is to leave the grammar as it is, and introduce a post-grammatical
component to determine the likelihood of a particular liaison, taking
into account lexical, prosodic, collocational, and other information. A
second, more promising line of analysis is to make a more sophisticated
use of the dtrs-to-phon function. Since this function operates on com-
plete representations of the signs it combines, it has access to all the
necessary information. Thus dtrs-to-phon could output, in addition to
the phonological form of a phrase with or without liaison, an indication
of the probability of actually realizing that particular option.

References

Abeillé, Anne and Danièle Godard. 2000. French word order and lexical
weight. In R. D. Borsley, ed., The Nature and Function of Syntactic Cat-
egories, vol. 32 of Syntax and Semantics, pages 325–360. San Diego: Aca-
demic Press.

Abeillé, Anne and Danièle Godard. 2002. The syntactic structure of French
auxiliaries. Language 78:404–452.

Bonami, Olivier and Gilles Boyé. 2003. La nature morphologique des allo-
morphies conditionnées. Les formes de liaison des adjectifs en français. In
Fradin et al. (2003).

Bonami, Olivier, Danièle Godard, and Jean-Marie Marandin. 1999. Con-
stituency and word order in French subject inversion. In G. Bouma, E. Hin-
richs, G.-J. Kruijff, and R. T. Oehrle, eds., Constraints and Resources in
Natural Language Syntax and Semantics, pages 21–40. Stanford, CA: CSLI
Publications.

Bybee, Joan. 2001. Frequency effects on French liaison. In J. Bybee and
P. Hopper, eds., Frequency and the emergence of linguistic structure, pages
337–359. Amsterdam: John Benjamins.

Comorovski, Ileana. To appear. Quel. In F. Corblin and H. de Swart, eds.,
Handbook of French Semantics. Stanford, CA: CSLI Publications.

de Jong, Daan. 1994. La sociophonologie de la liaison orléanaise. In C. Lyche,
ed., French Generative Phonology: Retrospective and Perspectives, pages
95-130. Salford: AFLS/ESRI.

References / 45

Delattre, Pierre. 1966. Studies in French and comparative phonetics. The
Hague: Mouton.

Encrevé, Pierre. 1988. La liaison avec et sans enchâınement . Paris: Seuil.

Fouché, Pierre. 1959. Traité de prononciation française. Paris: Klincksieck.

Fougeron, Cécile, Jean-Philippe Goldman, Alicia Dart, Laurence Guélat and
Clémentine Jeager. 2001. Influence de facteurs stylistiques, syntaxiques
et lexicaux sur la réalisation de la liaison français. Actes de TALN 2001 ,
pages 173–182.

Fradin, Bernard, Georgette Dal, Françoise Kerleroux, Nabil Hathout, Marc
Plénat, and Michel Roché, eds. 2003. Les Unités morphologiques / Mor-
phological Units. Villeneuve d’Ascq: Silex.

Miller, Philip H. 1992. Clitics and Constituents in Phrase Structure Gram-
mar . New York: Garland.

Miller, Philip H. and Ivan A. Sag. 1997. French clitic movement without
clitics or movement. Natural Language and Linguistic Theory 15:573–639.

Morin, Yves-Charles. 1998. Remarks on prenominal liaison consonants in
French. Ms., Université de Montréal.

Morin, Yves-Charles and Jonathan D. Kaye. 1982. The syntactic bases for
French liaison. Journal of Linguistics pages 291–330.

Post, Brechtje. 2000. Pitch accents, liaison and the phonological phrase in
French. Probus 12:127–164.

Sag, Ivan A., Thomas Wasow, and Emily M. Bender. 2003. Syntactic Theory:
a Formal Introduction. Stanford, CA: CSLI Publications.

Selkirk, Elisabeth O. 1972. The phrase phonology of English and French.
Ph.D. thesis, MIT.

Selkirk, Elisabeth O. 1974. French liaison and the X̄ convention. Linguistic
Inquiry 5:573–590.

Selkirk, Elisabeth O. 1986. On derived domains in sentence phonology.
Phonology Yearbook 3:371–405.

Steriade, Donka. 1999. Lexical conservatism in French adjectival liaison. In
J.-M. Authier, B. E. Bullock, and L. Reed, eds., Formal perspectives on
Romance linguistics, pages 243–270. Amsterdam: John Benjamins.

Tranel, Bernard. 1981. Concreteness in Generative Phonology: Evidence from
French. Berkeley: University of California Press.

Tseng, Jesse. 2003a. Edge features and French liaison. In J.-B. Kim and
S. Wechsler, eds., Proceedings of the 9th International HPSG Conference,
pages 313–333. Stanford, CA: CSLI Publications.

Tseng, Jesse. 2003b. Un traitement lexical des affixes syntagmatiques du
français. In Fradin et al. (2003).

4

On Induction of Morphology

Grammars and its Role in

Bootstrapping

Damir Ćavar, Joshua Herring, Toshikazu Ikuta,
Paul Rodrigues, Giancarlo Schrementi

Different Alignment Based Learning (ABL) algorithms have been pro-
posed for unsupervised grammar induction, e. g. Zaanen (2001) and
Déjean (1998), in particular for the induction of syntactic rules. How-
ever, ABL seems to be better suited for the induction of morphological
rules. In this paper we show how unsupervised hypothesis generation
with ABL algorithms can be used to induce a lexicon and morphological
rules for various types of languages, e. g. agglutinative or polysynthetic
languages. The resulting morphological rules and structures are opti-
mized with the use of conflicting constraints on the size and statistical
properties of the grammars, i. e. Minimium Description Length and
Minimum Relative Entropy together with Maximum Average
Mutual Information. Further, we discuss how the resulting (optimal
and regular) grammar can be used for lexical clustering/classification
for the induction of syntactic (context free) rules.

4.1 Introduction

In previous approaches grammar induction algorithms consisted of
three fundamental phases, see e. g. van Zaanen and Adriaans (2001),
Zaanen (2001), Déjean (1998):

. Hypothesis generation

47

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

48 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

. Hypothesis selection

. Induction

From the computational perspective the main problems lie on the
generational and selectional level. Both of these components try to
reduce the set of hypotheses about the structure of selected natural
language input to the smallest possible amount that provides the best
coverage given a targeted formalism or description level. That is, it
tries to maximize relevant and minimize irrelevant hypotheses based
on the need to reduce computational complexity and errors in the final
induction phase. Thus, the art of grammar induction is to find the
equilibrium between the amount of hypotheses generated and the effort
invested to select the best candidates.

In what follows, we will discuss the results from investigations into
unsupervised grammar induction algorithms that make use of string
alignment for hypothesis generation driven purely by previous experi-
ence, or, in other words, by the lexicon and the hypotheses generated
at every step in the incremental consumption and induction procedure.
ABL is such an approach, see for example Zaanen (2001). Its propo-
nents have thus far hesitated to recognize ABL as an approach that is
attractive from computational as well as a cognitive perspectives. ABL
constrains the hypothesis space from the outset to the set of hypothe-
ses that are motivated by previous experience/input or a preexisting
grammar. Such constraining characteristics make ABL attractive from
a cognitive point of view, both because the computational complexity
is reduced on account of the reduced set of potential hypotheses, and
also because the learning of new items, rules, or structural properties
is related to a general learning strategy and previous experience only.
The approaches that are based on a brute-force first order explosion of
hypotheses with subsequent filtering of relevant or irrelevant structures
are both memory intensive and require more computational effort.

The basic concepts in ABL go back to notions of substitutabil-
ity and/or complementarity, as discussed in Harris (1955) and Harris
(1961). The concept of substitutability is used in the central part of
the induction procedure itself, the assumption being that substitutable
elements (e. g. substrings, words, structures) are assumed to be of
the same type (represented e. g. with the same symbol). The notion
of “same type” is not uncontroversial. Its use in syntax as a test for
membership in a particular “part-of-speech” category, for example, was
rightly criticized in Pinker (1994) and Chomsky (1955). However, it
remains a rather reliable constituent test, and is certainly reliable in
the sense in which it is understood in this paper. By “substitutabil-

On Induction of Morphology Grammars / 49

ity,” we understand not so much an instrument to identify consitutents
of the same type but rather of a method of identifying constituents
as such. The typing of constituents could be the result of indepen-
dent components that use alignment information and other statistical
properties.

Nevertheless, the ABL approach has disadvantages if not used prop-
erly. The size of the grammar can affect the runtime behavior of ABL
systems, as can learning errors. In the following, we will describe our
implementation and the use case, the problems and solutions for a
grammar induction algorithm based on ABL.

While ABL is used in a slightly restricted way for hypothesis gener-
ation, we make use of different methods in the evaluation component
to reduce the error rate and increase the performance of the algorithm,
both with respect to the runtime behavior as well as the output quality.
Interacting weighted constraints are used to increase the efficiency of
the resulting grammar and eliminate irrelevant structural descriptions.
In particular, the central constraints we use are:

. Maximum Average Mutual Information (MI), which requires
that the mutual information between segments of a structural de-
scription and the complete structural descriptions acquired so far
(the hypotheses space for the induction procedure), is maximized.
Hypotheses that maximally contribute to the average mutual infor-
mation are preferred.

. Minimum Relative Entropy (RE), which requires that the rela-
tive entropy for all resulting structural descriptions is minimized.

. Minimum Description Length (MDL), which requires that the
size of the resulting grammar (including structural descriptions) is
minimized.

All constraints are used for evaluation and selection of the best hy-
potheses by taking into account the properties of the resulting grammar
and the structural descriptions it generates. All the constraints seem
to be well-motivated from a cognitive perspective, assuming that the
cognitive resources are limited with respect to e. g. memory capacity
and processing time. Grammar acquisition is seen as a compression
process that emerges under memory and processing time restrictions,
i. e. compressing the language input as much as possible while maintain-
ing online usability. The compression ratio is limited by the processing
capacities and time constraints imposed by language use. Unlimited
creativity is thus seen here to be a side effect of complementary con-
straints of memory driven compression (grammar induction) and time
and processing driven usability. The algorithm is parametrized along

50 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

these lines, allowing for fine grained restrictions of the runtime envi-
ronment. This potentially allows us to test the impact of the different
constraints on the resulting grammar.

One of the underlying research hypotheses here is also that a large
amount of valuable syntactic information can be induced if informa-
tion from other linguistic domains is used. That is, if large parts of the
morphological, phonological or prosodic restrictions can be induced,
assuming that these are to a great extent regular, we expect this infor-
mation to be used as bootstraps to syntactic structure, assuming that
this is mainly context free (or mildly context sensitive). In other words,
the hypothesis here is that at least parts of context free grammar can
be learned if regular grammars are used that describe or generate parts
of natural language input. This is how we understand bootstrapping in
grammar induction or natural language acquisition.

Thus, the design criteria for the algorithm presented here are compu-
tational, cognitive, and linguistic in nature, and though we assume that
the algorithm can be used in virtually all linguistic domains (prosody,
phonology, syntax), our concern here is mainly with the induction of
morphological structure and any underlying rules that might (or might
not) be used to describe such structure. The main research question is
to what extent can we use this type of algorithm to induce morpho-
logical grammars that can then serve, together with the morphological
terminals, as cues for syntactic structure and rules.

4.2 Specification of the algorithm

On the basis of the design criteria for the algorithm, as discussed above,
a first implementation of the ABL-based induction algorithm was in-
cremental. The algorithm was designed as an iterative procedure that
consumes utterances, generates hypotheses for the morphological struc-
ture of every individual word in the utterance, and adds the most ac-
curate hypotheses to the grammar and/or lexicon. The entire cycle of
hypothesis generation, evaluation and induction is passed through for
each word in the input. 1

The variant of the ABL algorithm for morphology that we are using
makes use of simple substring maching, described in further detail be-
low. If a morpheme is found as a submorpheme in an input word, its
edges are assumed to represent potential morpheme boundaries within
that word. We apply the restriction that only words that occure as
independent morphemes are used for this alignment based hypothesis

1A Python implementation and more detailed information is available at
http://jones.ling.indiana.edu/ abugi/.

On Induction of Morphology Grammars / 51

generation.
In order to reduce the computational complexity of the algorithm,

we take all generated rules and lexical entries as final if there is more
than one occurrence of a similar pattern in the grammar. There is no
revision of the made hypotheses that enter the final hypothesis space
and are part of the structural descriptions (SD) that serve as input
to the induction procedure, generated wrong SDs being expected to
become statistically insignificant as the incremental grammar induction
process runs.

As mentioned, the input to the algorithm is a list of words that is
processed incrementally. That is, we make use of word boundaries, pre-
supposing an existing segmentation of the input. For the purpose here,
and to generate better results, we focus on the generation of morpholog-
ical segmentation for a given set of words. In principle, however, there
is no reason why the same algorithm, with minor refinements, couldn’t
be used to segment a raw string of alphanumeric characters into usable
units separated by word boundaries. Indeed, we believe that a defining
feature of our work, and one which distinguishes it from previous work,
e. g. Goldsmith (2001), is that there is a concentrated attempt to elimi-
nate all built-in knowledge from the system. The algorithm starts with
a clean state and uses only statistical, numerical, and string matching
techniques in an effort to remain as close as possible to a cognitive
model, with a central focus on unsupervised induction. The main goal
of this strategy is to identify the algorithms that allow for induction
of specific linguistic knowledge, and to identify the possibly necessary
supervision for each algorithm type.

Thus we assume for the input:

. Alphabet: a non-empty set A of n symbols {s1, s2, . . . sn}

. Word: a wordw a non-empty list of symbolsw = [s1, s2, . . . sn], with s ∈
A

. Corpus: a non-empty list C of words C = [w1, w2, . . . wn]

The output of the ABL hypothesis generation is a set of hypotheses
for a given input word. A hypothesis is a tuple:

. H =< w, f, g >, with w the input word, f its frequency in C, and
g a list of substrings that represent a linear list of morphemes i w,
g = [m1,m2, . . .mn]

The hypotheses are collected in a hypotheses space. The hypothesis
space is defined as a list of hypotheses:

. Hypotheses space: S = [H1, H2, . . .Hn]

52 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

The algorithm does not make any assumptions about types of mor-
phemes. There is no expectation of specific structure in the input, nor
does it use notions like stem, prefix, or suffix. We assume only linear
sequences. The fact that single morphemes exist as stems or suffixes is
a side effect of their statistical properties (including Frequency and left
and right Pointwise Mutual Information, a term that will be explained
below) and alignment within the corpus, or rather within words.

There are no language specific rules built-in, such as what a mor-
pheme must contain or how frequent it should be. All of this knowledge
is learned, based on statistical analysis of prior experience. However, as
discussed in the last section, at certain points in the learning procedure
we lose the performance benefit of not relying on such rules to escape
linguistic and statistical anomalies that might lead the program astray.

Each iteration of the incremental learning process consists of the
following steps:

1. ABL Hypotheses Generation

2. Hypotheses Evaluation and Selection

3. Grammar Extension

In the ABL Hypotheses Generation, a given word in the utterance
is checked against all the morphemes in the grammar. If an existing
morpheme m aligns with the input word w, a hypothesis is generated
suggesting a morphological boundary at the alignment positions:

w(speaks) +m(speak) = H [speak, s] (4.1)

Another design criterion for the algorithm is complete language in-
dependence. It should be able to identify morphological structures of
Indo-European type of languages, as well as agglutinative languages
(e. g. Japanese and Turkish) and polysynthetic languages like some
Bantu dialects or Native American languages like Lakhota. In order to
guarantee this behavior, we extended the Alignment Based hypothesis
generation with a pattern identifier that extracts patterns of character
sequences of the types:

1. A – B – A

2. A – B – A – B

3. A – B – A – C

This component is realized with cascaded finite state transducers
that are able to identify and return the substrings that correspond to
the repeating sequences.2

2This addition might be understood to be a sort of supervision in the system.

On Induction of Morphology Grammars / 53

All possible alignments for the existing grammar at the current state
are collected and evaluated. The Hypothesis Evaluation and Selection
step uses a set of different criteria to find the best hypotheses. The
following evaluation criteria are used:

. Maximization of Pointwise Mutual Information between the mor-
phemes

. Minimization of the Relative Entropy for the resulting grammar

. Minimization of the Description Length for the resulting grammar

. Minimization of the number of morphemes

. Maximization of the length of morphemes

. Maximization of the frequency of a morpheme boundary over all
ABL Hypotheses

Each of these criteria is weighted relative to the others. While the
different choices for the relative weights of the criteria were partially
arbitrary in our experiments,3 the choice of criteria is not.

The criteria are related to assumptions we make about cognitive as-
pects of language and grammar. Specifically, we assume that the prop-
erties of natural language grammars are constrained by limited mem-
ory resources resulting in a preference for smaller grammars which are
maximally efficient in terms of run time, computational complexity and
memory space consumption. We employ an interaction of MDL, Max-
imum MI and Minimum RE to reach an optimally- sized and efficient
grammar. We relate efficiency to Information Theoretic notions of cod-
ing length, channel capacity and transmission time, as well as symbol
replacement operations for the processing and generation of natural
language utterances. Thus, indirectly the number of morphemes and
their length is related to usability aspects, since the number of mor-
phemes is related to the number of symbols used in induced rules, and
thus to the number of replacement operations in processing and genera-
tion. Along these lines we group the above listed evaluation constraints
into memory and usability oriented constraints.

The choice of evaluation criteria is also influenced by the expectation
that languages will differ with respect to the importance of particular
constraints at specific linguistic levels. The well-known correlation be-
tween richness of morphology and restrictiveness of word order as well

However, as shown in recent research on human cognitive abilities, and especially on
the ability to identify patterns in the speech signal by very young infants Marcus
et al. (1999), we can assume such an ability to be part of the general cognitive
endowment, maybe not even language specific.

3Currently we are working on automatic adaption of these weights during the
learning process. This is potentially the locus of a self-supervision strategy, as also
pointed out by one reviewer.

54 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

as the quantitative correlation between the number of words per ut-
terance and the number of morphemes per word is expected to be due
to different weights on a set of constraints that natural languages are
subject to.

In the following sections the components of the evaluation module
are described in more detail.

4.2.1 Mutual Information (MI)

For the purpose of this experiment we use a variant of standard Mutual
Information (MI), see Charniak (1996) and MacKay (2003) for some use
cases. Information theory tells us that the presence of a given morpheme
restricts the possibilities of the occurrence of morphemes to the left and
right, thus lowering the amount of bits needed to store its neighbors.
Thus we should be able to calculate the amount of bits needed by
a morpheme to predict its right and left neighbors respectively. To
calculate this, we have designed a variant of mutual information that
is concerned with a single direction of information.

This is calculated in the following way. For every morpheme y that
occurs to the right of x we sum the pointwise MI between x and y,
but we relativize the pointwise MI by the probability that y follows x,
given that x occurs. This then gives us the expectation of the amount
of information that x tells us about which morpheme will be to its
right. Note that p(< x, y >) is the probability of the bigram < x, y >
occurring and is not equal to p(< y, x >) which is the probability of
the bigram < y, x > occuring.

We calculate the MI on the right side of x ∈ G by:

∑

y∈{<x,Y >}

p(< x, y > |x)lg
p(< x, y >)

p(x)p(y)
(4.2)

and the MI on the left of x ∈ G respectively by:

∑

y∈{<Y,x>}

p(< y, x > |x)lg
p(< y, x >)

p(y)p(x)
(4.3)

One way we use this as a metric, is by summing up the left and right
MI for each morpheme in a hypothesis. We then look for the hypothesis
that results in the maximal value of this sum. The tendency for this to
favor hypotheses with many morphemes is countered by our criterion
of favoring hypotheses with fewer morphemes, a topic we will discuss
in greater detail below.

Another way to use the left and right MI is in judging the quality of
morpheme boundaries. In a good boundary, the morpheme on the left

On Induction of Morphology Grammars / 55

side should have high right MI and the morpheme on the right should
have high left MI. Unfortunately, MI is not initially very reliable be-
cause of the low frequency of many words, and removing hypotheses
with poor boundaries prevents the algorithm from bootstrapping itself
as all boundaries are poor in the beginning. We are currently experi-
menting with phasing this in as MI is deemed more reliable in making
these judgments.

4.2.2 Description Length (DL)

The principle of Minimum Description Length (MDL) as used in recent
work on grammar induction and unsupervised language acquisition,
e. g. Goldsmith (2001), Marcken (1996), and Grünwald (1998), explains
the grammar induction process as an iterative minimization procedure
of the grammar size, where the smaller grammar corresponds to the
best grammar for the given data/corpus.

The description length metric, as we use it here, tells us how many
bits of information would be required to store a word given a hypothesis
of the morpheme boundaries, using our grammar. For each morpheme
in the hypothesis that doesn’t occur in the grammar we need to store
the string representing the morpheme. For morphemes that do occur in
our grammar we just need to store a pointer to that morpheme’s entry
in the grammar. We use a simplified calculation, taken from Goldsmith
(2001), of the cost of storing a string that takes the number of bits of
information required to store a letter of the alphabet and multiply it
by the length of the string.

lg(length(A)) ∗ len(morpheme) (4.4)

We have two different methods of calculating the cost of the pointer.
The first takes a cue from Morse code and gives a variable cost de-
pending on the frequency of the morpheme that it is pointing to. So
first we calculate the frequency rank of the morpheme being pointed
to, (e. g. the most frequent has rank 1, the second rank 2, etc.). We
then calculate:

floor(lg(freqrank)− 1) (4.5)

to get a number of bits similar to the way Morse code assigns lengths
to various letters.

The second is simpler and only calculates the entropy of the grammar
of morphemes and uses this as the cost of all pointers to the grammar.
The entropy equation is as follows:

56 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

∑

x∈G

p(x)lg
1

p(x)
(4.6)

The second equation doesn’t give variable pointer lengths, but it
is preferred since it doesn’t carry the heavy compuational burden of
calculating the frequency rank.

We calculate the description length for each hypothesis individually
by summing up the cost of each morpheme in the hypothesis. Those
with low description lengths are favored. Note that we do not calculate
the sizes of the grammars with and without any given hypothesis. The
computational load of the algorithm is thus significantly reduced; by
calculating only the relative increase for every suggested hypothesis and
favoring the hypothesis with the smallest increase in overall description
length, a large number of potentially wasteful computational steps are
avoided. In subsequent versions of the algorithm the description length
will be calculated on the basis of the resulting grammars after the
induction step.

4.2.3 Relative Entropy (RE)

We use RE as a measure for the cost of adding a hypothesis to the
existing grammar. We look for hypotheses that, when added to the
grammar, will result in minimal divergence from the original.

We calculate RE as a variant of the Kullback-Leibler Divergence,
see e. g. Charniak (1996) and MacKay (2003). Given grammar G1, the
grammar generated so far, and G2, the grammar with the extension
generated for the new input increment, P (X) is the probability mass
function (pmf) for grammar G2, and Q(X) the pmf for grammar G1:

∑

x∈X

P (x)lg
P (x)

Q(x)
(4.7)

Note that with every new iteration a new element can appear that is
not part of G1. Our variant of RE takes this into account by calculating
the costs for such a new element x to be the point-wise entropy of this
element in P (X), summing up over all new elements:

∑

x∈X

P (x)lg
1

P (x)
(4.8)

These two sums then form the RE between the original grammar
and the new grammar with the addition of the hypothesis. Hypotheses
with low RE are favored.

This metric behaves similarly to description length, discussed above,

On Induction of Morphology Grammars / 57

in that both calculate the distance between our original grammar and
the grammar with the inclusion of the new hypothesis. The primary
difference is that RE also takes into account how the probability mass
function differs between the two grammars and that our variation pun-
ishes new morphemes based upon their frequency relative to the fre-
quency of other morphemes. MDL does not consider frequency in this
way, which is why we include RE as metric. We are currently investi-
gating this to identify under what conditions they behave differently.

4.2.4 Further Metric

In addition to the mentioned metric, we take into account the following
criteria:

. Frequency of Morpheme Boundaries

. Number of Morpheme Boundaries

. Length of Morphemes

The frequency of morpheme boundaries is given by the number of
hypotheses that contain this boundary. The basic intuition is that the
higher this number, i. e. the more alignments are found at a certain posi-
tion within a word, the more likely this position represents a morpheme
boundary. We favor hypotheses with high values for this criterion.

To prevent the algorithm from degenerating into a state where each
letter is identified as a morpheme, we favor hypotheses with lower
numbers of morpheme boundaries. For this same reason, we also take
morpheme length into account, prefering hypotheses with longer mor-
phemes (again, to avoid running into a situation where every letter in
a word is taken to be morphologically significant).

4.2.5 Pre-grammar generation

With every successful evaluation of hypotheses a set of signatures for
each morpheme is generated, similar to the approach suggested in Gold-
smith (2001). An example signature is given in the following, where the
symbol X represents the slot for the respective morpheme left of the
arrow.

. clock → [[[’X’, ’s$’], 1], [[’X’], 1]]

The signature contains the possible realizations of the word clock,
either with the suffix s or alone. Each possible realization contains the
count of total occurencies of the respective word form.

With every evaluation result, the potential hypotheses are evaluated
on the basis of the existing grammar by calculating the likelihood of the
new potential signature, given the existing signatures in the grammar.

58 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

A hypothesis that fits into the general pattern found in the grammar
is prefered.

Grammar generation is performed by replacement of all words with
equal signatures with a symbol and merger of all signatures to one. The
resulting grammar represents the basis for calculations of the descrip-
tion length. Further, the resulting signatures are used to derive type
information for the respective morphemes, as described below.

4.3 Evaluation

We used two methods to evaluate the performance of the algorithm.
The first analyzes the accuracy of the morphological rules produced by
the algorithm after an increment of n words. The second looks at how
accurately the algorithm parsed each word that it encountered as it
progressed through the corpus.

The first analysis looks at each grammar rule generated by the al-
gorithm and judges it on the correctness of the rule and the resulting
parse. A grammar rule consists of a stem and the suffixes and prefixes
that can be attached to it, similar to the signatures used in Goldsmith
(2001). The grammar rule was then marked as to whether it consisted
of legitimate suffixes and prefixes for that stem and also as to whether
the stem of the rule was a true stem, as opposed to a stem plus an-
other morpheme that wasn’t identified by the algorithm. The number
of rules that were correct in these two categories were then summed,
and precision and recall figures were calculated for the trial. The tri-
als described in the graph below were run on three increasingly large
portions of the general ficiton section of the Brown Corpus. The first
trial was run on one randomly chosen chapter, the second trial on two
chapters, and the third trial run on three chapters. The graph shows
the harmonic average (F-score) of precision and recall.

On Induction of Morphology Grammars / 59

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

1 2 3

Trials

H
a
r
m

o
n

ic
 A

v
e
r
a
g

e

The second analysis is conducted as the algorithm is running and
examines each parse the algorihm produces. The algorithm’s parses are
compared with the correct morphological parse of the word using the
following method to derive a numerical score for a particular parse.
The first part of the score is the distance in characters between each
morphological boundary in the two parses, with a score of one point for
each character apart in the word. The second part is a penalty of two
points for each morphological boundary that occurs in one parse and
not the other. These scores were examined within a moving window of
words that progressed through the corpus as the algorithm ran. The
average scores of words in each such string of words were calculated as
the window advanced. The purpose of these windows was to allow the
performance of the algorithm to be judged at a given point without
prior performance in the corpus affecting the analysis of the current
window. The following chart shows how the average performance of
the windows of analyzed words as the algorithm progresses through
five randomly chosen chapters of general fiction in the Brown Corpus
amounting to around 10,000 words. The window size for the following
chart was set to 40 words.

60 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

Progression of Average Score of Windows

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

A
v
e
r
a
g

e
 S

c
o

r
e
 i

n
 W

in
d

o
w

We are currently performing detailed testing of the algorithm on Es-
peranto and Japanese corpora. The highly regular morphology of Es-
peranto should provide an interesting comparison against the fractured
morphology of English. Likewise, the agglutinative nature of Japanese
should provide a fertile test bed for morphological analysis.

The primary experiments conducted to date have been performed
using the Brown Corpus of Standard American English, consisting of
1,156,329 words from American texts printed in 1961 organized into
59,503 utterances and compiled by W. N. Francis and H. Kucera at
Brown University.4

4.4 Conclusion

The algorithm generates very good structures for the initial input,
achieving, under certain settings, a precision of up to 100% (mean-
ing that it returns a wordlist consisting entirely of “usable” words).
Recall was significantly less accurate, but still respectable, scoring in
the 60% range on the settings that reached 100% precision. It will have
been noted in the graph provided above that the process is also quite
stable and improves steadily (if slowly) over time, never falling even
temporarily behind.

Our main focus in this project was to derive the necessary type

4Additional experiments were done each for Classical Japanese and Esperanto.
The Japanese experiment used a roman-character version of “Genji Monogatari”
(The Tales of Genji), compiled by Prof. Eichi Shibuya of Takachiho University. Due
to the highly regular (and pervasive) nature of the morphology, Esperanto provided
an interesting frame for comparison. Tests were conducted on two corpora compiled
from the Internet.

References / 61

information for words that can be used in the induction of syntactic
structures. As discussed in Elghamry and Ćavar (2004), the type infor-
mation can be used in a cue-based learning system to derive higher-level
grammatical rules, up to the level of syntactic frames. The high levels
of precision achived suggest that errors in the input will not be a barrier
in this next step. Using the morphological information discovered here,
it should be possible to induce word types based on their morphological
signatures (in context). The main concern would be whether the algo-
rithm generates results with high enough recall to provide a sufficient
amount of information on which to base such an induction. The recall
numbers achieved in our experiments strongly suggest that it does.

The weights of the system are not fixed and can be adjusted to
increase recall, decreasing precision. This might be of relevance for other
domains and applications of this approach.

Ongoing studies with different language types will help us in the
development of the necessary self-supervision component, especially in
the adaptation of the weights of the evaluation constraints during run-
time. Given the post-evaluation component that evaluates the relevance
of signatures for words, we are already able to predict that certain
weights should be reduced, specifically those that are responsible for
the generation of irrelevant hypotheses. More results will be available
after detailed evaluation on data from agglutinative and synthetic or
polysynthetic languages.

References

Charniak, Eugene. 1996. Statistical language learning . Cambridge, Mass.:
MIT Press, 1st edn.

Chomsky, Noam. 1955. The Logical Structure of Linguistic Theory . Dis-
tributed by Indiana University Linguistics Club. Published in part by
Plenum, 1975.

Déjean, Hervé. 1998. Concepts et algorithmes pour la découverte des struc-
tures formelles des langues. doctoral dissertation, Université de Caen
Basse Normandie.

Elghamry, Khaled and Damir Ćavar. 2004. Bootstrapping cues for cue-based
bootstrapping. Mscr. Indiana University.

Goldsmith, John. 2001. Unsupervised learning of the morphology of a natural
language. Computational Linguistics 27(2):153–198.

Grünwald, Peter. 1998. The Minimum Description Length Principle and
Reasoning under Uncertainty . doctoral dissertation, Universiteit van Am-
sterdam.

Harris, Zellig S. 1955. From phonemes to morphemes. Language 31(2):190–
222.

62 / Ćavar, Herring, Ikuta, Rodrigues and Schrementi

Harris, Zellig S. 1961. Structural linguistics. Chicago: University of Chicago
Press. Published in 1951 under title: Methods in structural linguistics.

MacKay, David J. C. 2003. Information Theory, Inference, and Learning
Algorithms. Cambridge: Cambridge University Press.

Marcken, Carl G. de. 1996. Unsupervised Language Acquisition. Phd disser-
tation, Massachusetts Institute of Technology.

Marcus, G. F., S. Vijayan, S. Bandi Rao, and P. M. Vishton. 1999. Rule-
learning in seven-month-old infants. Science 283:77–80.

Pinker, Steven. 1994. The language instinct . New York, NY: W. Morrow
and Co.

van Zaanen, Menno M. and Pieter Adriaans. 2001. Comparing two unsu-
pervised grammar induction systems: Alignment-based learning vs. emile.
Tech. Rep. TR2001.05, University of Leeds.

Zaanen, Menno M. van. 2001. Bootstrapping Structure into Language:
Alignment-Based Learning . Doctoral dissertation, The University of Leeds.

5

Bidirectional Optimality for

Regular Tree Languages
Stephan Kepser

5.1 Introduction

Optimality theory (OT henceforth) has been introduced by Prince and
Smolensky (1993) originally as a model for generative phonology. In
recent years, this approach has been applied successfully to a range of
syntactic phenomena, and it is currently gaining popularity in seman-
tics and pragmatics as well. It is based on the idea that a mapping from
one level of linguistic representation to another should be described in
terms of rules and filters. The novel contribution of OT is that filters
– or, synonymously, constraints – are ranked and violable. Thus the
result of a rule-based generation process may still be acceptable al-
though it violates certain constraints as long as other results violate
more constraints or constraints that are higher ranked.

In other words, the rules generate a set of candidates that are com-
petitors. On this set, the constraints are applied in the order of their
ranking starting with the highest ranked constraint. A candidate may
violate a constraint more than once. The application of the highest
ranked constraint assigns each candidate the number of violations of
that constraint. Some of the candidates are now optimal with respect to
this constraint in the sense that they violate the constraint the fewest
times. These, and only these, are retained for the next round of con-
straint application. In each round, the current constraint is applied
to the set of candidates remaining from the previous rounds. And only
those candidates that are optimal with respect to the current constraint

63

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

64 / Stephan Kepser

make it into the next round. In the end, after applying all constraints, a
set of candidates is reached which is optimal with respect to the given
ranking of the constraints. The method is therefore comparable to a
high jump competition in athletics.

Frank and Satta (1998) show that certain classes of OT-systems can
be handled by finite state techniques. Their approach is influenced by
ideas from computational phonology, the original field of application for
OT. In this view, the generation of candidates is a relation on strings,
and this relation is defined by a finite state transducer. In order to also
render constraints by finite state automata, two restrictions have to be
made. The first one is that constraints have to be binary, that is to
say, each constraint assigns each candidate either 0 or 1. The second
restriction demands constraints to be output constraints. An output
constraint is a constraint that assigns a number to a candidate pair
purely on the base of its output. Under these restrictions, constraints
can be rendered as regular string languages over the output. The aim of
the paper by Frank and Satta (1998) is to provide a modularity result
for the complexity of an OT-system in the following sense. Suppose
that the set of candidates is given by a finite state transducer and
all constraints are expressable by regular languages. Then the whole
OT-system can be rendered by finite state techniques and is no more
complex than its components. The success of the approach by Frank
and Satta is based on well-known closure properties of regular string
languages.

The work by Frank and Satta was extended into two diverging di-
rections. Based on the observation that natural language syntax and
semantics have trees as their underlying data structures and not strings
Wartena (2000) and Kepser and Mönnich (2003) propose ways to ex-
tend the approach by Frank and Satta to tree languages. Wartena
(2000) shows that the original results for strings can be extended
straight forwardly to trees, since the closure properties for regular
string languages needed by Frank and Satta also hold for regular tree
languages. Observing that there are certain non-regular phenomena in
some natural languages (see, e.g., (Shieber, 1985)) Kepser and Mönnich
(2003) extend the result by Wartena to linear context-free tree lan-
guages. In their work, the generator is split into a source for input
trees defined by means of a linear context-free tree grammar and a
relation between input trees and output trees defined by a linear tree
transducer. Constraints are defined by monadic second-order formu-
lae or, equivalently, regular tree languages. Their modularity result is
based on closure properties of linear context-free tree languages also
shown in that paper.

Bidirectional Optimality for Regular Tree Languages / 65

The second direction concerns the notion of optimality. All of the
above described approaches are unidirectional in the sense that they
describe ways to find optimal output for a given input. This view is ap-
parently generation driven. Blutner (2000) points out that in particular
in semantics and pragmatics unidirectional optimality may not suffice.
The optimal interpretation of an utterance is obtained by an interplay
between the generation process on the speaker side and the parsing
process on the hearer side. Blutner therefore introduces the notion of
bidirectional optimality theory. Formal properties of bidirectional OT
are studied by Jäger (2002, 2003). He shows that the modularity re-
sult of Frank and Satta extends to bidirectional OT-systems of regular
string languages. Jäger (2003) also shows that for bidirectional OT-
systems the restriction to binary constraints is essential to achieve the
modularity result.

Jäger states that the construction for bidirectional optimality of
string languages in the earlier paper extends to bidirectional optimal-
ity of regular tree languages, if some automaton or tree transducer
representing the Cartesian product of two regular tree languages can
be provided. Actually, the proofs Jäger presents are that general in na-
ture that they need not change for the case of regular tree languages.
The present paper closes this gap. Cartesian products of regular tree
languages can be defined by means of so-called tree tuple automata
(Comon et al., 1997). And tree tuple automata can be integrated into
the finite state construction used to compute bidirectionally optimal
pairs. Thus the modularity result by Jäger (2002) for bidirectional op-
timality extends to the case of regular tree languages.

For obvious reasons the present paper follows Jäger (2002) very
tightly quoting it frequently.

5.2 Preliminaries

Regular Tree Grammars

A ranked alphabet (or ranked operator domain) Σ is an indexed family
〈Σn〉n∈NI of disjoint sets. A symbol f in Σn is called an operator of rank
n. If n = 0, then f is also called a constant. For a ranked alphabet Σ,
the set of trees over Σ (or Σ-trees or terms over Σ), denoted TΣ is the
smallest set of strings over Σ∪{(,)} such that Σ0 ⊆ TΣ and, for n ≥ 1,
if f ∈ Σn and t1, . . . , tn ∈ TΣ, then f(t1, . . . , tn) ∈ TΣ. A subset of TΣ

is called a tree language over Σ.
Any set M can be interpreted as a signature in which all of the ele-

ments of M are constants. Thus TΣ∪M denotes the set of trees over Σ
and M . Let X = {x1, x2, x3, . . . } be an infinite set (of variables). Then

66 / Stephan Kepser

TΣ(x1, . . . , xn) = TΣ∪{x1,...,xn} denotes the set of trees over Σ and ad-
ditional variables {x1, . . . , xn}. From the point of view of a signature, a
“variable” is a constant. If t ∈ TΣ(X) then we also write t(x1, . . . , xn)
to indicate that the variables of t are a subset of the set {x1, . . . , xn}.
Let Σ and Ω be two signatures, let t(x1, . . . , xn) ∈ TΣ(x1, . . . , xn), and
let t1, . . . , tn ∈ TΩ. Then t(t1, . . . , tn) ∈ TΣ∪Ω is the result of simul-
taneously replacing each occurrence of xj in t(x1, . . . , xn) by tj (with
1 ≤ j ≤ n).

Now we define the notion of a regular tree grammar.

Definition 1 A regular tree grammar is a quadruple G = (Σ,F , S, P)
where

Σ is a finite ranked alphabet of terminals,
F is a finite set of nonterminals or function symbols,

disjoint with Σ,
S ∈ F is the start symbol, and
P is a finite set of productions (or rules) of the form

F → t, where F ∈ F and t ∈ TΣ∪F .

For a regular tree grammar G = (Σ,F , S, P) the derivation relation
is given as follows. Let s1, s2 ∈ TΣ∪F . We say s1 ⇒ s2 if and only if
there is a production F → t and F is a leaf node of s1. Tree s2 is
obtained from s1 by replacing F with the tree t. As usual,

∗
⇒ stands

for the reflexive-transitive closure of ⇒. For a regular tree grammar G,
we define L(G) = {t ∈ TΣ | S

∗
⇒ t}. L(G) is called the tree language

generated by G.

Tree Automata and Tree Transducers

For regular tree languages there exists an automaton model that corre-
sponds to finite state automata for regular string languages. Let Σ be
a signature. A frontier-to-root tree automaton is a triple A = (Q,F, δ)
where Q is a finite set of states, F ⊆ Q a set of final states and δ is a
finite transition relation. Each transition has the form

f(q1, . . . qn)→ q

where f ∈ Σn, q, q1, . . . , qn ∈ Q. On an intuitive level, a frontier-to-root
tree automaton labels the nodes in a tree with states starting from the
leaves and going to the root. Suppose n is a node in the tree and f is the
k-ary function symbol at node n and the k daughters of n are already
labelled with states q1, . . . , qk, and furthermore f(q1, . . . , qk) → q is a
transition of A, then node n can be labelled with state q. A tree is
accepted if the root can be labelled with a final state.

We will now report some results about the theory of regular tree lan-
guages. For more information, consult the work by Gécseg and Steinby

Bidirectional Optimality for Regular Tree Languages / 67

(1984, 1997). A tree languageL is regular if and only if there is a tree au-
tomaton that accepts L. Regular tree languages are closed under union,
intersection, and complement. There are corresponding constructions
for tree automata. And finally, for every tree automaton accepting lan-
guage L there exists a tree automaton also accepting L which has a
single final state.

Tree automata can be generalised to automata that transform one
tree into another, so-called tree transducers. The following exposition
on tree transduction is taken from (Gécseg and Steinby, 1997). Let Σ
and Ω be two signatures. A binary relation τ ⊆ TΣ × TΩ is called a
tree transformation. A pair (s, t) ∈ τ is interpreted to mean that τ may
transform s into t. We can speak of compositions, inverses, domains,
and ranges of tree transformations as those of binary relations. We will
now define frontier-to-root tree transducers.

Definition 2 A frontier-to-root tree transducer (or F-transducer) con-
sists of a quintuple A = (Σ,Ω, Q, P, F) where Σ and Ω are signatures;
Q is a finite set of states, each element of Q is a unary function; F ⊆ Q
is the set of final states ; and P is a finite set of productions of the
following type:

f(q1(x1), . . . , qm(xm))→ q(t(x1, . . . , xm))

where f ∈ Σm, q1, . . . , qm, q ∈ Q, t(x1, . . . , xm) ∈ TΩ(x1, . . . , xm).

The transformation induced by an F-transducer is defined as follow.
We write QTΩ for the set {q(t) | q ∈ Q, t ∈ TΩ} and regard QTΩ as a
set of constants. Let s, t ∈ TΣ∪QTΩ be two trees. It is said that t can be
obtained by a direct derivation from s in A iff t can be obtained from
s by replacing an occurrence of a subtree f(q1(t1), . . . , qm(tm)) (with
f ∈ Σm, q1, . . . , qm ∈ Q, t1, . . . , tm ∈ TΩ) in s by q(t(t1, . . . , tm)), where
f(q1(x1), . . . , qm(xm)) → q(t(x1, . . . , xm)) is a production from P . If s
directly derives t in A then we write s ⇒A t. The reflexive transitive
closure s⇒∗

A t is the derivation relation.
Intuitively, an F-transducer traverses a tree s from the leaves to

the root rewriting it at the same time. In a single derivation step we
consider a node n in s with label f where all the daughter nodes are
already transformed into trees of TΩ and each daughter node is in some
state qi. Then we replace the subtree of node n with the tree t from
the production where the place holder variables of t are replaced by the
trees of the daughter nodes of n. The root of this subtree is put into
state q.

The relation

τA = {(s, t) | s ∈ TΣ, t ∈ TΩ, s⇒
∗
A q(t) for some q ∈ F}

68 / Stephan Kepser

is the transformation relation induced by A. A relation τ ⊆ TΣ × TΩ

is an F-transformation if there exists an F-transducer A such that
τ = τA. For a tree language L ⊆ TΣ we define A(L) = {t ∈ TΩ |
∃s ∈ L with (s, t) ∈ τA}.

A production f(q1(x1), . . . , qm(xm))→ q(t(x1, . . . , xm)) is called lin-
ear if each variable x1, . . . , xm occurs at most once in t. An F-transducer
is linear if each production is linear. We denote a linear F-transducer
by LF-transducer. We will make use of the following results about LF-
transducers.

Proposition 1 LF-transducers are closed under composition.
The classes of regular tree language is closed under LF-transductions.
The domain and range of an LF-transducer is a regular tree language.
For every regular tree language L there is an LF-transducer ι such that
Dom(ι) = Rng(ι) = L and ι is the identity on L.

These results can be found, e.g., in (Gécseg and Steinby, 1984, 1997).
If A1 and A2 are two LF-transducers, we write A1 ◦ A2 for the com-
position of first A1 and then A2. Let L1 and L2 be two tree languages.
A binary relation R ⊆ L1 × L2 is called rational if there exists an
LF-transducer A such that τA = R.

LF-transducers define relations between tree languages where there
is a strong connection between the input trees and the output trees.
Obviously, an output tree is constructed on the base of a structural
decomposition of the input tree. As stated in the introduction, we also
need an automaton or a transducer representation of the Cartesian
product of arbitrary regular tree languages. In a Cartesian product, ev-
ery element of the input tree language is related to every element of the
output tree language. Hence there is in general no structural relation
between an input tree and an output tree. Therefore LF-transducers
are not capable of defining the Cartesian product of two regular tree
languages, as already observed by Jäger (2002).

But the Cartesian product of two (or more) regular tree languages
can be defined by means of tree tuple automata. Comon et al. (1997,
Sect. 3.2) describe three classes of tree tuple automata two of which can
be used for the definition of a Cartesian product. The simplest class,
which suffices already for our purposes, is based on pairs of automata.
Let L1 and L2 be two regular tree languages, and let A1 be a bottom-
up tree automaton accepting L1, and A2 a bottom-up tree automaton
accepting L2. Define for any two trees s, t that (s, t) ∈ (A1,A2) iff
s ∈ A1 and t ∈ A2. Then, obviously, (A1,A2) defines the relation
L1 × L2. This relation is called Rec× in (Comon et al., 1997).

A more powerful definition of tree tuple automata is given, if the re-

Bidirectional Optimality for Regular Tree Languages / 69

f

��
��

��
��

;;
;;

;;
;;

m

��
��

��
��

(f ,m)

ww
ww

ww
ww

w

HH
HH

HH
HH

H

a g h d n

<<
<<

<<
<<

+3 (a,d) (g,n)

ww
ww

ww
ww

w
(h,⊥)

b a a c (b,a) (⊥,c) (a,⊥)

FIGURE 1 Coding two trees in a single one.

lation is expressed by a single automaton instead of a pair of automata.
To make this approach work, two trees have to be coded in a single one.
Let Σ and Ω be two signatures. We define trees with labels as pairs of
(Σ∪{⊥}×Ω∪{⊥}) where ⊥ is a new (padding) symbol not contained
in Σ or Ω. For a pair of trees (s, t) ∈ (TΣ × TΩ) we define inductively
their coding [s, t] by

[f(t1, . . . , tn), g(u1, . . . , um)] =
{

(f, g)([t1, u1], . . . , [tm, um], [tm+1,⊥], . . . , [tn,⊥]) if n ≥ m

(f, g)([t1, u1], . . . , [tn, un], [⊥, un+1], . . . , [⊥, um]) if m ≥ n

Basically, the union of the tree domains is constructed and the nodes
are labelled with pairs of labels. If one tree lacks a branch, then the
padding symbol ⊥ is used. See Figure 1 for an example.

Now, Rec is the set of relations R ⊆ TΣ × TΩ such that {[s, t] |
(s, t) ∈ R} is accepted by a bottom-up tree automaton on the signature
(Σ ∪ {⊥} × Ω ∪ {⊥}).

We quote some results on tree tuple automata (see Comon et al.,
1997). Rec× is strictly included in Rec. Rec× and Rec are closed under
union, intersection and complement.

There exists an extended definition of tree transducers by Comon
et al. (1997), who introduce ε-rules. Extended tree transducers are
strictly more powerful than standard tree transducers as defined above
in the sense that every relation definable by a standard tree transducer
is definable by an extended tree transducer. But there are relations
definable by an extended tree transducer that cannot be defined by a
standard tree transducer. These extended tree transducers, however,
are not capable of defining arbitrary Cartesian products of regular tree
languages. Therefore they cannot be used to substitute the above de-
fined tree tuple automata.

Monadic Second-Order Logic

Monadic second-order logic (MSO) is an extension of first-order logic
by set variables and quantification over set variables. MSO is quite

70 / Stephan Kepser

a powerful logic. Many graph theoretical properties can be expressed
in MSO, for example that a graph is a proper tree. Courcelle (1990)
showed that if a relation is definable in MSO, then so is its transitive
closure. For tree languages, it is known that a tree language is regular
iff it is definable by an MSO formula (see, e.g., Gécseg and Steinby,
1984). Thus an MSO formula can be translated into a tree automaton
accepting the same tree language.

5.3 Optimality Theory

We now turn to optimality theory. Let us start by making the notions
of optimality theory more precise. In the general case, an OT-system
consists of a binary relation GEN and a finite set of constraints that
are linearly ordered. Constraints may be violated several times. So a
constraint should be construed as a function from GEN into the nat-
ural numbers. Thus an OT-system assigns each candidate pair from
GEN a sequence of natural numbers. The ordering of the elements of
GEN that is induced by the OT-system is the lexicographic ordering
of these sequences.

Definition 3 An OT-system is a pair (GEN, C) where GEN is a bi-
nary relation and C = 〈c1, . . . , cp〉, p ∈ NI , is a linearly ordered sequence
of functions from GEN to NI . Let a, b ∈ GEN. We say a is more eco-
nomical than b (a < b), if there is a k ≤ p such that ck(a) < ck(b) and
for all j < k : cj(a) = cj(b).

Intuitively, an output o is optimal for some input i iff GEN relates o
to i and o is optimal amongst the possible outputs for i. This is the no-
tion of unidirectional optimality, which is obviously generation-driven.
Bidirectional optimality reflects the fact that in semantics and prag-
matics the relation between input (a form) and output (a meaning)
can and perhaps should be regarded as an interplay between parsing
optimality and generation optimality. Hence Jäger (2002), formalising
ideas by Blutner (1998, 2000), defines bidirectional optimality as fol-
lows.

Definition 4 A form-meaning pair (f,m) is bidirectionally optimal iff

1. (f,m) ∈ GEN,
2. there is no bidirectionally optimal (f ′,m) such that (f ′,m) <

(f,m),
3. there is no bidirectionally optimal (f,m′) such that (f,m′) <

(f,m).

Thus, checking whether a form-meaning pair is bidirectionally optimal
requires simultaneous evaluation of form alternatives and meaning al-

Bidirectional Optimality for Regular Tree Languages / 71

ternatives of this pair. This definition is not circular in cases where the
ordering of pairs is well-founded. As was shown by Jäger (2002), the
ordering of pairs given by the definition of an OT-system is indeed well-
founded. Hence bidirectional optimality of OT-systems is not a circular
notion.

The type of constraints considered in the literature on finite state
OT and also used here is not quite as general as Definition 3 insinu-
ates. Firstly, constraints have to be binary, i.e., a constraint assigns a
candidate pair either the number 0 or 1. This restriction is not quite
as severe as it may seem. Every constraint with an upper bound on
the number of violations can be translated into a sequence of binary
constraints.

Secondly, so-called markedness constraints are considered only. A
markedness constraint is a constraint that either evaluates solely the
input or solely the output.

Definition 5 Let (GEN, (c1, . . . , cp)) be an OT-system.
A constraint cj is an output markedness constraint iff cj(i, o) = cj(i

′, o)
for all (i, o), (i′, o) ∈ GEN.
A constraint cj is an input markedness constraint iff cj(i, o) = cj(i, o

′)
for all (i, o), (i, o′) ∈ GEN.

To gain a better understanding of how bidirectional optimality is
evaluated on markedness constraints in a (finite) OT-system consider
this example by Jäger (2002). The following text is a direct quote from
(Jäger, 2002, p. 441f).
“Suppose GEN = {1, 2, 3} × {1, 2, 3}, and we have two constraints
which both say ‘Be small!’ One of its instances applies to the input and
one to the output. Thus formally we have

. O = (GEN, C).

. GEN = {1, 2, 3}× {1, 2, 3}.

. C = 〈c1, c2〉.

. c1(〈i, o〉) = i.

. c2(〈i, o〉) = o.

It follows from the way constraints are evaluated that 〈i1, o1〉 <O
〈i2, o2〉 iff i1 ≤ i2, o1 ≤ o2, and 〈i1, o1〉 6= 〈i2, o2〉. Now obviously 〈1, 1〉 is
bidirectionally optimal since both its input and its output obey the con-
straints in an optimal way. Accordingly, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉, and 〈3, 1〉
are blocked, since they all share a component with a bidirectionally
optimal candidate. There are still candidates left which are neither
marked as optimal nor as blocked, so we have to repeat this procedure.
Amongst the remaining candidates, 〈2, 2〉 is certainly bidirectionally

72 / Stephan Kepser

optimal because all of its competitors in either dimension are known
to be blocked. This candidate in turn blocks 〈2, 3〉, 〈3, 2〉. The only re-
maining candidate, 〈3, 3〉, is again bidirectionally optimal since all its
competitors are blocked.1 This example illustrates the general strategy
for the finite case: Find the cheapest input-output pairs in the whole
of GEN and mark them as bidirectionally optimal. Next mark all can-
didates that share either the input or the output component (but not
both) with one of these bidirectionally optimal candidates as blocked. If
there are any candidates left that are neither marked as bidirectionally
optimal nor as blocked, repeat the procedure until GEN is exhausted.”
And this ended the quote.

The construction of an OT-system for tree languages looks in prin-
ciple as follows. The generation relation GEN is expressed by an LF-
transducer, i.e., it is a rational relation. The constraints are expressed
by MSO-sentences either on the input or on the output. As stated be-
fore, an MSO-sentence can be translated into a regular tree language
and an LF-transducer. It is important to note that a constraint in OT
is violable, and this is also true for binary constraints. If some can-
didates fulfil the constraint, then all others are filtered out. But if all
candidates miss the constraint, all of them pass through, because no
candidate is relatively better than the others. Frank and Satta (1998)
provide a construction called conditional intersection that gives a trans-
ducer implementing this violability. Wartena (2000) shows how to ex-
tend this construction to trees for unidirectional optimality. And Jäger
(2002) provides the extension for optimality theory on regular string
languages.

The proposal by Jäger (2002) can be transfered to regular tree lan-
guages in a rather direct manner. Let R be a rational relation and
L ⊆ Rng(R) be a regular tree language. The conditional intersection
R ↑ L is defined as

R ↑ L := (R ◦ ιL) ∪ (ιDom(R)−Dom(R◦ιL) ◦R).

For an input markedness constraint represented by L ⊆ Dom(R) we
set dually

R ↓ L := (ιL ◦R) ∪ (R ◦ ιRng(R)−Rng(ιL◦R)).

These intersections relate individually optimal input and output pairs.
But in bidirectional optimality we are looking for globally optimal pairs.
Hence bidirectional intersection is defined as follows. Let R be a rational

1Bidirectional optimality thus predicts iconicity: the pairing of cheap inputs with
cheap outputs is optimal, but also the pairing of expensive inputs with expensive
outputs. See Blutner’s (1998, 2000) papers for further discussion of this point.

Bidirectional Optimality for Regular Tree Languages / 73

relation and c a binary markedness constraint. Let ∗ be an arbitrary
constant, i.e., a tree consisting of a single node, the root, labelled with
∗. Then

R ⇑ c :=

R ◦ ιRng(({∗}×Rng(R))↑c) if c is an output
markedness constraint

ιDom((Dom(R)×{∗})↓c) ◦R else

The construction works as follows. {∗}×Rng(R) relates the regular
tree language {∗} to any possible output of R, which is also a regular
tree language. Conditional intersection with c gives
(({∗} ×Rng(R)) ◦ ιc) ∪ (ι{∗}−Dom(({∗}×Rng(R))◦ιc) ◦ ({∗} ×Rng(R))).
By definition, this is equal to
({∗}× (Rng(R)∩ c)) ∪ (({∗}−Dom({∗}× (Rng(R)∩ c)))×Rng(R)).
Since tree tuple automata are closed under union and their domains
and ranges are obviously regular tree languages, the construction is
well defined. It is defined in such a way that either the left hand side
or the right hand side of the ∪ is the empty relation, depending on
whether Rng(R) ∩ c is empty or not.

If Rng(R)∩c is non-empty, then the above reduces to {∗}×(Rng(R)∩
c). If Rng(R)∩ c is empty, then this reduces to {∗}×Rng(R). In either
way, Rng(({∗} × Rng(R)) ↑ c) is the set of outputs of R that are
optimal with respect to c, and it is a regular tree language. Thus R ⇑ c
is a rational relation, and it is the set of pairs (i, o) ∈ R that are
optimal with respect to c. If c is an input markedness constraint, the
dual statements are true.

Lemma 2 Let O = (GEN, C) be an OT-system, where C = (c1, . . . , cp)
is a sequence of binary markedness constraints. Then

(i, o) ∈ GEN ⇑ c1 . . . ⇑ cp

iff (i, o) ∈ GEN and there is no (i′, o′) ∈ GEN such that (i′, o′) <
(i, o).

The proof for this lemma is identical to the proof of Lemma 3 on
page 443 of (Jäger, 2002).

The application of a sequence of constraints C = (c1, . . . , cp) to a
rational relation R can be seen as an operator C(R) := R ⇑ c1 . . . ⇑ cp
filtering out the globally optimal pairs. As a result, R is partitioned
into three sets: C(R), the set B of pairs that share one component
with a pair of C(R) (but not both), and the set U of pairs that share
no component with a pair of C(R). The pairs that share one component
with a pair in C(R) are blocked, they cannot be bidirectionally optimal.
But no statement can be made about the pairs in U . Some of them

74 / Stephan Kepser

may be bidirectionally optimal, some may not. Thus, similarly to the
toy example given before, the filtering procedure has to be applied to
U . And this step of filtering and finding the unmarked pairs has to be
iterated till R is exhausted.

Definition 6 Let O = (GEN, C) be an OT-system. Define

X0 := ∅,

Xn+1 := Xn ∪ C(ιDom(GEN)−Dom(Xn) ◦GEN
◦ιRng(GEN)−Rng(Xn)),

X :=
⋃

n≥0

Xn.

For every natural number n, Xn+1 adds those pairs to Xn that are
not blocked byXn and optimal. Hence,X is the set of all bidirectionally
optimal pairs.

Lemma 3 Let O = (GEN, C) be an OT-system. Then (i, o) ∈ X iff
(i, o) ∈ GEN and (i, o) is bidirectionally optimal.

The proof of this lemma is given as the proof of Lemma 4, page 444
of (Jäger, 2002).

As Jäger (2002) remarks, the operationXn is a cumulative definition
of bidirectional optimality. And on the assumption that GEN and
Xn are rational relations and the constraints are binary markedness
constraints expressable as regular tree languages, the relation Xn+1 is
again a rational relation, i.e., expressable by finite state means. Since
∅ = ∅ × ∅ is a rational relation on trees, bidirectional optimality of
regular tree languages can be computed with finite state techniques
provided the iteration of exhausting GEN terminates after a finite
number of steps, i.e., there is a k ∈ NI such that X = Xk.

Lemma 4 Let O = (GEN, C) be an OT-system with C = (c1, . . . , cp)
where all ci are binary markedness constraints. Then X = X2p−1 .

The proof of this lemma is given as the proof of Lemma 5, page 447 of
(Jäger, 2002).

The following main theorem integrates the observations made in this
section.

Theorem 5 Let O = (GEN, C) be an OT-system with C = (c1, . . . , cp)
where all ci are binary markedness constraints. Furthermore let GEN
be a rational relation and all ci be MSO-sentences. Then the set of
bidirectionally optimal elements of GEN is again a rational relation.

References / 75

5.4 Conclusion

This paper extends the approach by Jäger (2002) for bidirectional op-
timality from regular string languages to regular tree languages. We
have shown that if the generator of an OT-system consists of a linear
frontier-to-root transducer and the constraints are expressed by MSO-
sentences on either the input or the output, then the OT-system can
be rendered by finite state tree automata and tree transducers. This
implies that the complexity of the whole OT-system is not larger than
the complexity of its most complex components.

The most important difference of the construction for tree languages
as compared to the one for string languages can be found in the fact
that we need two types of finte state devices for tree languages. Finite
state string transducer are capable of expressing the Cartesian product
of two regular string languages. Therefore the construction for the com-
putation of optimal pairs needs finite state string transducers only. In
the case of tree language, the situation is different. Cartesian products
of arbitrary regular tree languages cannot be defined by means of LF-
transducers, not even if one allows for ε-rules. Therefore we introduced
tree tuple automata into the construction. On the other hand there
exist relations of regular tree languages definable by LF-transducers –
rational relations, as we called them – that cannot be defined by means
of tree tuple automata. These are in particular relations where there is
an intricate relationship between the input and the output trees. Thus
tree tuple automata cannot replace the LF-transducers, and we need
indeed both types of finite state tree devices.

A interesting and important question is whether this approach can be
extended to more complex generation relations that are based context-
free instead of regular tree grammars. These extensions seem rather
difficult. It looks like there is a way to compute the globally optimal
pairs using LF-transducers. But whether the recursion step involved in
bidirectional optimality (the definition of the Xn) can be rendered by
finite state means is doubtful.

References

Blutner, Reinhard. 1998. Lexical pragmatics. Journal of Sematics 15:115–
162.

Blutner, Reinhard. 2000. Some aspects of optimality in natural language
interpretation. Journal of Semantics 17:189–216.

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacque-
mard, Denis Lugiez, Sophie Tison, and Marc Tommasi. 1997.
Tree automata techniques and applications. Available at:

76 / Stephan Kepser

http://www.grappa.univ-lille3.fr/tata. Release October, 1st
2002.

Courcelle, Bruno. 1990. Graph rewriting: An algebraic and logic approach.
In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, vol. B,
chap. 5, pages 193–242. Elsevier.

Frank, Robert and Giorgio Satta. 1998. Optimality theory and the generative
complexity of constraint violability. Computational Linguistics 24:307–
315.

Gécseg, Ferenc and Magnus Steinby. 1984. Tree Automata. Budapest:
Akademiai Kiado.

Gécseg, Ferenc and Magnus Steinby. 1997. Tree languages. In G. Rozen-
berg and A. Salomaa, eds., Handbook of Formal Languages, Vol 3: Beyond
Words, pages 1–68. Springer-Verlag.

Jäger, Gerhard. 2002. Some notes on the formal properties of bidirectional
optimality theory. Journal of Logic, Language, and Information 11:427–
451.

Jäger, Gerhard. 2003. Recursion by optimization: On the complexity of bidi-
rectional optimality theory. Natural Language Engineering 9(1):21–38.

Kepser, Stephan and Uwe Mönnich. 2003. A note on the complexity of
optimality theory. In G. Scollo and A. Nijholt, eds., Proceedings Algebraic
Methods in Language Processing (AMiLP-3), pages 153–166.

Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint in-
teraction in generative grammar. Tech. Rep. RuCCTS-TR 2, Rutgers
University.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy 8:333–343.

Wartena, Christian. 2000. A note on the complexity of optimality systems.
In R. Blutner and G. Jäger, eds., Studies in Optimality Theory , pages 64–
72. University of Potsdam. Also available at Rutgers Optimality Archive
as ROA 385-03100.

6

Grammatical Framework and

Multiple Context-Free Grammars
Peter Ljunglöf

Grammatical Framework (GF) (Ranta, 2004) is a grammar formalism
originating from logical frameworks for dependent type theory. It is
already known that the parsing problem for GF is undecidable, which
has to do with the possibility to formulate undecidable propositions.
But for subclasses of GF, in particular GF with a context-free backbone,
parsing is decidable. Until now the parsing complexity of context-free
GF has been unknown, which we aim to change with this article.

We show that there is a simple one-to-one correspondence between
Grammatical Framework with context-free backbone and Multiple
Context-Free Grammars (MCFG) (Seki et al., 1991). Since the parsing
complexity for MCFGs is known to be polynomial in the length of the
input, we get the same result for context-free GF.

GF with dependent types is undecidable in general, but the separa-
tion of abstract and concrete syntax makes it possible to use a two-step
process in parsing. First a MCFG parser is used to create a chart, then
each item in the chart is converted to a Horn clause. The resulting logic
program then solves the parsing problem.

6.1 Grammatical Framework

Grammatical Framework (Ranta, 2004) is a grammar formalism built
upon a Logical Framework. What GF adds to the logical framework
is a possibility to define concrete syntax, that is, notations express-
ing formal concepts in user-readable ways. Although GF grammars are

77

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

78 / Peter Ljunglöf

bidirectional, the perspective of GF is on generation rather than pars-
ing. A difference from usual grammar formalisms is the support for
multilinguality; it is possible to define several concrete syntaxes upon
one abstract syntax. The abstract syntax then works as an interlingua
between the concrete syntaxes. The development of GF as an authoring
system started as a plug-in to the proof editor ALF, to permit natural-
language rendering of formal proofs (Hallgren and Ranta, 2000). The
extension of the scope outside mathematics was made in the Multilin-
gual Document Authoring project at Xerox (Dymetman et al., 2000). In
continued work, GF has been used in areas like software specifications
(Hähnle et al., 2002) and dialogue systems (Ranta and Cooper, 2004).
In this article we have changed the notation somewhat, compared to
other GF articles. The reason for this is to make the comparison with
Generalized Context-Free Grammars simpler. There are also some fea-
tures of GF that we do not mention, mainly syntactic sugar and some
default notations.

6.1.1 GF with a context-free backbone

Grammatical Framework is a strongly typed functional language; func-
tional in the sense that a grammar defines a set of functions, and
strongly typed in the sense that each function has a given typing,
known at compile-time. Basic types in GF are called categories, and
are specified by the grammar. For now we assume that there are only a
finite number of categories – in section 6.1.3 we generalize the concept
to dependent and higher-order categories.

A function is specified by a typing, an (optional) definition and a
linearization. To retain compositionality, all terms of a given category
A must linearize to the same linearization type, written [[A]].

Function typings The typing of a function tells us how many argu-
ments it takes, what their categories are and what category the result
is.

f : A1 → . . .→ Aδ → A

The function may take no arguments; in which case it is called a ground
term. Given a grammar, we define the abstract terms, or syntax trees,
as follows. The term f(t1, . . . , tδ) is of category A whenever each ti is
of category Ai.

Abstract definitions An abstract definition specifies a computation
rule on terms, thereby defining a notion of equality between terms. This
equality is a semantic equality, since it does not affect the concrete
linearizations; even though two terms are equal by definition, they can
be linearized to different strings. Since they do not affect the concrete

Grammatical Framework and Multiple CFGs / 79

syntax, we do not mention them further in this article.

Linearization terms and types Linearizations are written as terms
in a typed functional programming language, which is limited to ensure
decidability in generation and in parsing. The language has records
and finite-domain functions (called tables); and the basic types are
terminal lists (called strings) and finite data types (called parameter
types). There are also local definitions, lambda-abstractions and global
function definitions. The parameters are declared by the grammar; they
can be hierarcical but not recursive, to ensure finiteness.

Linearization definitions The linearization of a function term f is
a function (also written f) from the linearization types of the argu-
ment categories to the linearization type of the result category; or as a
functional typing, f : [[A1]]→ . . .→ [[Aδ]]→ [[A]].

f(x1, . . . , xδ) = φ

The linearization φ must of course be of type [[A]] (written φ : [[A]]),
given that each xi is of type [[Ai]]. Note that a limitation on the lin-
earization is that it is not possible to examine the structure of variables
by e.g. case analysis; which is one way of defining compositionality for
grammars.

6.1.2 Canonical GF

The concrete syntax of any GF grammar can be partially evaluated
to a grammar in canonical form, as shown in Ranta (2004). In canoni-
cal form, all local and global definitions disappear, as well as function
applications; and all tables are fully expanded. Hierarcical parameters
can be flattened; thus we can assume that the parameters are declared
by giving a finite set Par of parameter types, each P ∈ Par being a set
of parameters p1, . . . , pn. A linearization term in canonical GF is of the
following form:

. A string constant is of type Str; and a concatenation s1 · s2 : Str,
whenever s1, s2 : Str.

. A constant parameter p : P, whenever p ∈ P.

. A record { r1 = φ1 ; . . . ; rn = φn } is of type T = { r1 : T1 ; . . . ; rn :
Tn }, whenever each φi : Ti.

. A record projection φ.ri : Ti, whenever φ is of the record type T
above.

. A table [p1 ⇒ φ1 ; . . . ; pn ⇒ φn] is of type P ⇒ T , whenever
P = { p1, . . . , pn }, and each φi : T .

. A table selection φ !ψ : T , whenever φ : P⇒ T and ψ : P.

. An argument variable xi : [[Ai]].

80 / Peter Ljunglöf

[[S]] = { s : Str }

[[N]] = { s : Str ; n : Num }

[[V]] = { s : Num⇒ Str }

p : N → V → S

p(x, y) = { s = x.s · y.s ! (x.n) }

q : V → N → V

q(x, y) = { s = [n⇒ x.s !n · y.s] }

a : N = { s = “animals” ; n = Pl }

b : N = { s = “Bernie” ; n = Sg }

l : V = { s = [Sg⇒ “loves” ; Pl⇒ “love”] }

FIGURE 1 Example GF grammar

Together with this there are computation rules for string concatenation,
record projection and table selection.

An example grammar In figure 1, there is a simple example GF
grammar, which is not entirely in canonical form. The linearization of
q contains a non-expanded table [n ⇒ x.s !n · y.s], whose canonical
form is [Sg⇒ x.s ! Sg · y.s ; Pl⇒ x.s ! Pl · y.s].

6.1.3 GF with dependent categories

Full GF have a much more expressive abstract syntax than above; cat-
egories can depend on other categories. E.g. the grammar could specify
that categoryA depends of categoryB, meaning that A(x) is a category
whenever x is a term of category B.

Another extension is that arguments to function typings (and de-
pendent categories) can be functions and not just of a basic category.

These extensions turn the abstract syntax into a logical framework,
where e.g. undecidable propositions can be formulated, thus giving a
very expressive formalism. A natural question is then how to parse and
linearize terms with these extensions, which will be addressed in section
6.4.1.

6.2 Generalized CFG

Generalized Context-Free Grammars (GCFG) were introduced by Pol-
lard in the 80’s as a way of formally describing Head Grammars (Pol-
lard, 1984). Later people have used GCFG as a framework for describing
many other formalisms, such as Linear Context-Free Rewriting Systems
(Vijay-Shanker et al., 1987) and Multiple Context-Free Grammars (Seki

Grammatical Framework and Multiple CFGs / 81

et al., 1991); and here we will use it to describe GF with a context-free
backbone.

There are several definitions of GCFG in the litterature, and we in-
troduce yet another one, in which a Generalized Context-Free Grammar
consists of an abstract grammar together with a concrete interpreta-
tion.

Abstract grammar The abstract grammar is a tuple (C, S, F,R),
where C and F are finite sets of categories and function symbols re-
spectively, S ∈ C is the starting category, and R ⊆ C × F × C∗ is
a finite set of abstract syntax rules. For each function symbol f ∈ F
there is an associated context-free syntax rule.

A → f(A1, . . . , Aδ)

The tree rewriting relation A⇒ t is defined as A⇒ f(t1, . . . , tδ) when-
ever A1 ⇒ t1, . . . , Aδ ⇒ tδ .

Concrete interpretation To each category A is associated a lin-
earization type [[A]], which is not further specified. To each function
symbol f is associated a partial linearization function (also written f),
taking as many arguments as the abstract syntax rule specifies.

f ∈ [[A1]]→ . . .→ [[Aδ]]→ [[A]]

The linearization of a syntax tree is defined as [[f(t1, . . . , tδ)]] = f([[t1]], . . . , [[tδ]]),
if the application is defined. Note that we impose no restrictions on
the linearization types or the linearization functions; this is left to the
actual grammar formalism.

6.2.1 GF with a context-free backbone

Grammatical Framework with a context-free backbone is obviously
an instance of GCFG, where the abstract GF rule f : A1 → . . . →
Aδ → A is just another way of writing the abstract GCFG rule A →
f(A1, . . . , Aδ).

6.2.2 Multiple Context-Free Grammars

Multiple Context-Free Grammars (Seki et al., 1991) were introduced
in the late 80’s as a very expressive formalism, incorporating Linear
Context-Free Rewriting Systems and other mildly context-sensitive for-
malisms, but still with a polynomial parsing algorithm. MCFG is an
instance of GCFG, with the following restrictions on linearizations:

. Linearization types are restricted to tuples of strings.

. The only allowed operations in linearization functions are tuple pro-
jections and string concatenations.

82 / Peter Ljunglöf

Since records can be seen as syntactic sugar for tuples, we can use
records in this article without changing the definition of MCFG.

Comparison with GF Obviously MCFG is an instance of context-
free GF, but without tables and table selections. The fact that GF can
have nested records does not change anything – all nestings can be
flattened. Also, an expanded table

[p1 ⇒ φ1 ; . . . ; pn ⇒ φn] : P⇒ T

is equivalent to a record

{ p1 = φ1 ; . . . ; pn = φn } : { p1 : T ; . . . ; pn : T }

and an instantiated selection φ ! pi is equivalent to a projection φ.pi.
There are two fundamental differences:

. MCFG cannot have parameters as linearization values.

. A table selection in GF does not necessarily have to be an instanti-
ated parameter; it can be any term of the correct linearization type.

In the example grammar, the linearization of p contains a selection
y.s ! (x.n), which is not instantiated.

6.3 Converting GF to MCFG

In this section we show that it is possible to convert a GF grammar
into an equivalent grammar where all table selections are instantiated,
and containing no parameters. By the argument above, this means that
context-free GF and MCFG are equivalent. This conversion is done in
two steps, described later in sections 6.3.2 and 6.3.3, and the following
theorem is a consequence.

Theorem 23 Any GF grammar with a context-free backbone can be
reduced to an equivalent MCFG grammar.

6.3.1 Preliminaries

A linearization term φ is in η-normal form if the structure follows the
structure of its linearization type; i.e. φ is a record if the type is a
record type, and φ is an expanded table if the type is a table type.
The subterms of φ which are of the basic linearization types, Str or
P ∈ Par, are called the leaves of φ. A path is a sequence of record
projections and table selections; meaning that ε, σ.r and σ !φ are paths
if σ is a path. A path that does not contain any argument variables
xi is called instantiated; in which case the selections φ can only be
parameters. A non-instantiated path is called nested; this is because if
a path contains an argument variable xi, then that variable is always
followed by a (possibly empty) path.

Grammatical Framework and Multiple CFGs / 83

A linearization type T as well as a linearization φ can be partitioned
into parameter paths and string paths:

T Str = {σ : Str | T.σ = Str }

T Par = {σ : P | T.σ = P ∈ Par }

φStr = {σ = φ.σ | φ.σ : Str }

φPar = {σ = φ.σ | φ.σ : P ∈ Par }

Note that we equate nestings of tables/records and sets of path-value
pairs, and that we extend paths to linearization types in the obvious
way. Also note that there are only a finite number of instantiated pa-
rameter records π : T Par, since there are only finitely many parameters.

The example grammar For the term a : [[N]] in the example gram-
mar we have that

[[N]]Str = { s : Str }

[[N]]Par = {n : Num }

aStr = { s = “animals” }

aPar = {n = Pl }

6.3.2 A normal form for linearizations

Definition 1 A GF linearization is in table normal form if it is of the
form

f(x1, . . . , xδ) = [π1 ⇒ φ1 ; . . . ; πn ⇒ φn] ! ξ

and the following hold:

. ξ contains all parameter paths of the arguments x1, . . . , xδ; in other
words ξ = (xPar

1 , . . . , xPar

δ).
. Each πk is a possible parameter instantiation of ξ; in other words
πk : [[A1]]

Par × · · · × [[Aδ]]
Par.

. Each φk is in η-normal form where the leaves are either parameters
or concatenations of constant strings and instantiated string paths.

The following algorithm converts any GF linearization in canonical
form into normal form.

Algorithm 1 First, add the outer table as in the definition of table
normal form:

f(x1, . . . , xδ) = [π1 ⇒ φ ; . . . ; πn ⇒ φ] ! ξ

ξ = (xPar

1 , . . . , xPar

δ)

πk : [[A1]]
Par × · · · × [[Aδ]]

Par

Second, for each instantiation πk, convert φ to φk, by repeating the
following substitution until there are no parameter paths left:

84 / Peter Ljunglöf

. Substitute each instantiated parameter path xi.σ for its πk-instantiation
(πk)i.σ.

Lemma 24 The algorithm, together with the standard computation
rules, yields an equivalent linearization in table normal form.

The example grammar There are two linearizations in the example
that are not in table normal form, and this is how they look after
conversion:

p(x, y) = [Sg⇒ { s = x.s · y.s ! Sg } ;

Pl⇒ { s = x.s · y.s ! Pl }] ! x.n

q(x, y) = [Sg⇒ { s = [Sg⇒ x.s ! Sg · y.s ;

Pl⇒ x.s ! Pl · y.s] } ;

Pl⇒ { s = [Sg⇒ x.s ! Sg · y.s ;

Pl⇒ x.s ! Pl · y.s] }] ! y.n

6.3.3 Refining the abstract syntax

To get an MCF grammar, we have to get rid of the parameters in some
way; and this we do by moving them to the abstract syntax. Each table
row πk ⇒ φk above will then give rise to a unique function symbol with
linearization φk .

Algorithm 2 Given a GF grammar where all linearizations are in ta-
ble normal form, create a grammar with the following categories, func-
tion symbols and linearizations:

. For each cateogry A and each instantiated parameter record π :
[[A]]Par, create a new category Â = A[π]. The linearization type is
the same as the string paths of the original linearization type, [[Â]] =
[[A]]Str

. For each syntax rule A → f(A1, . . . , Aδ), and all new categories Â,

Â1, . . . , Âδ, create a new syntax rule Â → f̂(Â1, . . . , Âδ); where f̂

is a unique function symbol, f̂ = f [Â→ Â1 . . . Âδ].
. For each linearization function

f(x1, . . . , xδ) = [π1 ⇒ φ1 ; . . . ; πn ⇒ φn] ! ξ

and each table row πk ⇒ φk, create a new linearization function for
f̂ = f [Â→ Â1 . . . Âδ]:

f̂(x1, . . . , xδ) = φStr

k

Â = A[φPar

k]

Âi = Ai[(πk)i] (1 ≤ i ≤ δ)

where we by (πk)i mean the ith component of πk.

Grammatical Framework and Multiple CFGs / 85

[[N̂1]] = [[N̂2]] = [[Ŝ]] = { s : Str }

[[V̂]] = { s ! Sg : Str ; s ! Pl : Str }

p̂1 : N̂1 → V̂ → Ŝ

p̂1(x, y) = { s = x.s · y.s ! Sg}

p̂2 : N̂2 → V̂ → Ŝ

p̂2(x, y) = { s = x.s · y.s ! Pl }

q̂1 : V̂ → N̂1 → V̂

q̂1(x, y) = { s ! Sg = x.s ! Sg · y.s ;

s ! Pl = x.s ! Pl · y.s }

q̂2 : V̂ → N̂2 → V̂

q̂2(x, y) = q̂1(x, y)

â : N̂2 = { s = “animals” }

b̂ : N̂1 = { s = “Bernie” }

l̂ : V̂ = { s ! Sg = “loves” ; s ! Pl = “love” }

FIGURE 2 Grammar after conversion to MCFG

Obviously the resulting grammar is an MCF grammar, since all lin-
earizations are records of strings.

Lemma 25 The resulting grammar is equivalent to the original.

The example grammar Figure 2 shows how the example grammar
looks like after conversion to MCFG.

6.3.4 Non-deterministic reduction

There is a more direct conversion, using a non-deterministic substitu-
tion algorithm. This can also reduce the size of the resulting grammar,
when argument parameters are not mentioned in linearizations.

Algorithm 3 Assume the following abstract syntax rule, together with
its linearization function:

A → f(A1, . . . , Aδ)

f(x1, . . . , xδ) = φ

Repeat the following non-deterministic substitution until there are no
instantiated parameter paths left, accumulating the parameter records
π1, . . . , πδ:

. Substitute each instantiated parameter path xi.σ : P with any p ∈ P,
such that adding the row σ = p to πi is consistent.

86 / Peter Ljunglöf

Supposing that the final substituted linearization is ψ, we can add the
following rule for the new function symbol f̂ :

Â → f̂(Â1, . . . , Âδ)

f̂(x1, . . . , xδ) = ψStr

Â = A[ψPar]

Âi = Ai[πi] (1 ≤ i ≤ δ)

The algorithm is non-deterministic, and we get the final grammar
by finding all solutions for each function symbol f ; which can be done
by a standard all-solutions predicate, such as findall in Prolog.

Coercions between categories There is a difference between algo-
rithm 3 and the previous algorithms; if an argument parameter xi.σ is
not mentioned in φ, then there will be no σ-row in the constraint record
πi. This means that the new category Âi = Ai[πi] will only contain a
subrecord of Ai[φ

Par
i], where φi is a linearization of type [[Ai]].

Algorithm 4 Given two reduced syntax rules,

Â → f̂(. . . B̂1 . . .)

B̂2 → ĝ(. . .)

where B̂1 = B[π1] and B̂2 = B[π2]. If π1 is a subrecord of π2, add the
coercion function ĉ = c[π1π2]:

B̂1 → ĉ(B̂2)

ĉ(x) = x

The example grammar One function symbol gets a different lin-
earization from algorithm 3 than in figure 2; the functions q̂1 and q̂2
get merged into one function q̂.

q̂ : V̂ → N̂ → V̂

q̂(x, y) = { s ! Sg = x.s ! Sg · y.s ;

s ! Pl = x.s ! Pl · y.s }

where N̂ = N []. This yields coercions for the more specific types N̂1 =
N [n = Sg] and N̂2 = N [n = Pl]:

N̂ → ĉi(N̂i) (i = 1, 2)

ĉi(x) = x

6.4 Implications to Parsing

Definition 2 A chart for a GCFG is a finite set of tuples (f, φ, φ1, . . . , φδ),
where φ = f(φ1, . . . , φδ).

Grammatical Framework and Multiple CFGs / 87

A tree t = f(t1, . . . , tδ) is represented by the chart if it contains
(f, [[t]], [[t1]], . . . , [[tδ]]), and each subtree ti is represented by the chart.

The following lemma is just another way of saying that GCFG gram-
mars are compositional:

Lemma 26 The set of GCFG trees { t | [[t]] = φ }, for a given φ, can
be represented by a single chart.

In other words, a correct parsing algorithm for GCFGs does not have
to return anything more than a chart.

If we have translated a context-free GF grammar into MCFG us-
ing algorithm 1+2, it is straight-forward to translate back a chart
for the MCFG into a chart for the original grammar. Each item
(f̂ , φ, φ1, . . . , φδ), where f̂ = f [Â→ Â1 . . . Âδ] and Âi = Ai[πi], can be
converted to the item (f, φ ∪ π, φ1 ∪ π1, . . . , φδ ∪ πδ). Back-translation
of trees are even simpler; just strip off the extra information from the
nodes – each tree node f̂ = f [. . .] is converted to f .

If we have converted using algorithm 3+4, back-translation is only
slightly more complicated; if there is a coercion Âk → ĉ(Âk), where
Â′k = Ak[π′k], use the linearization φk ∪ π′k instead of φk ∪ πk.

6.4.1 Dependent categories

If we have a GF grammar with dependent categories, there is a straight-
forward two-step parsing process for that grammar. First we simply
remove all dependencies form the abstract syntax, thereby getting
a grammar with a context-free backbone. This grammar is over-
generating, so when parsing we get a chart containing all parse trees
we want, but perhaps also some unwanted trees.

The second step is to convert the chart into Horn clauses, which can
be solved by any proof search, e.g. standard Prolog. This conversion is
done one item at the time; suppose the following chart item:

(f, φ, φ1, . . . , φδ)

where f has the following abstract typing:

f : (x1 : A1)→ . . .→ (xδ : Aδ(x1, . . . , xδ−1))

→ A(x1, . . . , xδ)

From this we can create the following Horn clause (where t : A[φ] is
just syntactic sugar for a 3-tuple):

f(x1, . . . , xδ) : A(x1, . . . , xδ)[φ] :−

x1 : A1[φ1], . . . , xδ : Aδ(x1, . . . , xδ−1)[φδ]

Finally, the query :− x : S[φ], where x is a logic variable, will result

88 / Peter Ljunglöf

in all possible parse trees x of category S, linearizing to the input string
φ.

6.4.2 Functional categories

In full GF, arguments to functions can themselves be functions. This
gives rise to the question of how to linearize an “incomplete” category
B1 → . . .→ Bδ → B. This is solved in GF by pairing the linearization
of the result category B with linearizations of the variable bindings
representing objects of category B1, . . . , Bδ.

Formally, each occurence of a function categoryB1 → . . .→ Bδ → B
as an argument in a typing is replaced by the new category B̂, with
linearization type

[[B̂]] = [[B]]× [[Var]]δ

where Var is a unique category for recognizing variable bindings, speci-
fied by the grammar. In GF, the default linearization type of variables
is [[Var]] = Str, and it recognizes strings looking like ordinary mathe-
matical variables (“x”, “y”, “z”, . . .).

For each new category B̂ we also need a coercion b̂:

b̂ : B → Var→ . . .→ Var→ B̂

b̂(x, y1, . . . , yδ) = (x, y1, . . . , yδ)

This conversion show that adding function arguments to abstract
typings does not change the expressive power of GF, and that they are
possible to handle with the parsing algorithms described in this paper.

References

Dymetman, Marc, Veronica Lux, and Aarne Ranta. 2000. XML and multilin-
gual document authoring: Convergent trends. In COLING, Saarbrücken,
Germany , pages 243–249.

Hähnle, Reiner, Kristofer Johannisson, and Aarne Ranta. 2002. An authoring
tool for informal and formal requirements specifications. In R.-D. Kutsche
and H. Weber, eds., Fundamental Approaches to Software Engineering ,
vol. 2306 of LNCS , pages 233–248. Springer.

Hallgren, Thomas and Aarne Ranta. 2000. An extensible proof text editor. In
M. Parigot and A. Voronkov, eds., LPAR-2000 , vol. 1955 of LNCS/LNAI ,
pages 70–84. Springer.

Pollard, Carl. 1984. Generalised Phrase Structure Grammars, Head Gram-
mars and Natural Language. Ph.D. thesis, Stanford University.

Ranta, Aarne. 2004. Grammatical Framwork, a type-theoretical grammar
formalism. Journal of Functional Programming 14(2):145–189.

Ranta, Aarne and Robin Cooper. 2004. Dialogue systems as proof editors.
Journal of Logic, Language and Information To appear.

References / 89

Seki, Hiroyuki, Takashi Matsumara, Mamoru Fujii, and Tadao Kasami. 1991.
On multiple context-free grammars. Theoretical Computer Science 88:191–
229.

Vijay-Shanker, K. David Weir, and Aravind Joshi. 1987. Characterizing
structural descriptions produced by various grammatical formalisms. In
25th meeting of Association for Computational Linguistics.

7

Elliptical Constructions, Multiple

Frontings, and Surface-Based

Syntax

Stefan Müller

Kathol (1995, 1997, 2000, 2001) developed a theory of German clause
types that is based on the Topological Fields model known from de-
scriptive linguistics (Drach, 1937, Reis, 1980, Höhle, 1986, Askedal,
1986). He suggests relating the clause type of sentences to serialization
patterns of overtly realized material. In (Kathol, 1997), he used learn-
ability arguments to argue for a non-abstract syntax, i.e. a syntax where
surface order plays a crucial role and the reference to abstract syntactic
objects such as functional heads is avoided in favour of observationally
accessible properties (p. 89).

In this paper, I show that an entirely surface-based conception of
syntax is not tenable and that Kathol’s proposal faces problems with
certain elliptical constructions.

In the first section, I very briefly repeat his key assumptions. In Sec-
tion 7.2, I will discuss problematic aspects of the proposal like verbless
clauses, and declarative sentences that do not fit the pattern suggested
by Kathol. I then suggest an analysis that does not rely on the surface
order of constituents for the classification of clause types, but on the
relations expressed by immediate dominance schemata.

91

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

92 / Stefan Müller

7.1 Constructional Constraints and Topological Fields

The examples in (9) show various linearization patterns that are at-
tested in German clauses:

(1) a. daß
that

Lisa
Lisa

eine
a

Blume
flower

gepflanzt
planted

hat
has

‘that Lisa planted a flower.’

b. was
what

Lisa
Lisa

gepflanzt
planted

hat
has

c. Hat
has

Lisa
Lisa

eine
a

Blume
flower

gepflanzt?
planted

‘Did Lisa plant a flower?’

d. Eine
a

Blume
flower

hat
has

Lisa
Lisa

gepflanzt.
planted

‘Lisa planted a flower.’

(8a) is an example for sentences that are introduced by a complemen-
tizer and (8b) is an example for embedded interrogative sentences.
Both sentences are verb-final. (8c–d) are verb-initial sentences: (8c)
is a yes/no question and (8d) is a declarative sentence. Declarative sen-
tences usually differ from yes/no questions in that one constituent fills
the position before the finite verb.

7.1.1 Topological Fields, Linearization Rules, and
Uniqueness Constraints

Kathol (2001, p. 50) gives the following devision into topological fields
for the sentences in (9):

Vorfeld linke Mittelfeld rechte
‘initial field’ Satzklammer ‘middle field’ Satzklammer

‘left bracket’ ‘right bracket’
1 2 3 4

Vfinal daß Lisa eine Blume gepflanzt hat
was Lisa gepflanzt hat

V1 hat Lisa eine Blume gepflanzt
V2 eine Blume hat Lisa gepflanzt

This is the classical terminology with additional labels 1–4 to refer to
the respective positions.

He then formulates the following linearization constraints:

(2) Topological Linear Precedence Constraint
1 < 2 < 3 < 4

Elliptical Constructions and Surface-Based Syntax / 93

(3) Topological Uniqueness Conditions
a. 1 < 1
b. 2 < 2

The first constraint ensures that all elements that are assigned to the
field 1 are serialized before 2 and so on. The second is a trick from
the GPSG literature (Gazdar, Klein, Pullum, and Sag, 1985, p. 55)
to rule out multiple occurrences of elements assigned to the fields 1
or 2. Since constraint (8a) requires that all elements with the field 1
have to precede the other elements assigned to field 1 this constraint is
necessarily violated if there is more than one element assigned to 1.

7.1.2 A Hierarchy of Clause Types

Kathol follows Reape (1996, 1992, 1994), who introduced linearization
domains into the HPSG framework. Daughters which are combined by
the usual dominace schemata may be non-adjacent. The daughters are
inserted into a domain list named dom. The elements of this list may
be permuted in any order provided no LP constraint is violated. The
order of the elements corresponds to the surface order. This makes it
possible to assign both sentences in (9) the dominance structure in (10).

(4) a. der Mann das Buch liest

b. Liest der Mann das Buch?

(5) [V der Mann [V das Buch liest]]

The sentences differ only in the order of the elements in their lineariza-
tion domain. In the analysis of (7a) the verb is serialized finally and in
the analysis of (7b) it is serialized initially.

Kathol (2001) defines clause types with reference to elements in the
constituent order domains. He assumes that all clauses are subtypes of
the following three types:

(6) a. V1-clause →

S[fin]

dom

〈[

2

V[fin]

]

, . . .

〉

b. V2-clause →

S[fin]

dom

〈

[1],

[

2

V[fin]

]

, . . .

〉

94 / Stefan Müller

c. subord-clause →

S[fin]

dom

〈

. . . ,

[

2

head ¬ V[fin]

]

, . . .

〉

These types impose restrictions on possible orderings of elements in
constituent order domains or stipulate that finite verbs may not appear
in the field 2 in subordinated clauses. The first type states that a verb
first clause has a finite verb as the first element in its domain list and
the second states that there is an element in 1 (the Vorfeld) before the
finite verb in 2.

Kathol cross-classifies the types in (8) with the types declarative, wh-
interrogative, and polar . He provides the hierarchy shown in Figure 1.

finite-clause

internal-syntax clausality

root subord inter

v2 v1 wh polar decl

r-wh-int r-decl r-pol-int s-wh-int s-pol-int s-decl

FIGURE 1 Clausal Types

Such a linearization-based approach to clause type determination
would be very attractive if there were a one-by-one mapping from the
surface order of constituents to clause types, but as I will show in
Section 7.2, this is not the case.

7.1.3 Competition of Complementizer and Finite Verb

Kathol follows ideas by Thiersch (1978) and den Besten (1983) and
assumes that the complementizer and the finite verb compete for the
position in the left sentence bracket. If no complementizer is present,
the verb may move into the left sentence bracket. If the left sentence
bracket is occupied, it has to stay in the right sentence bracket.

Kathol enters verbs into the lexicon with a specification of the po-
tential topological fields they may appear in. He specifies finite verbs
for the fields 2 or 4. Complementizers are always located in the left
sentence bracket: They are specified for 2. If a linearization domain
contains a complementizer, the Topological Uniqueness Condition b

Elliptical Constructions and Surface-Based Syntax / 95

ensures that no other element can be serialized in 2, hence the field 4
is the only option for the finite verb.

7.2 Problematic Aspects of this Approach

In the following section I want to discuss four problematic aspects of
this proposal.

7.2.1 Verbless Clauses

There are main clauses in German that consist of a predicate and a
clause that depends on this predicate, but no verb (see also (Paul,
1919, p. 41) for more examples).

(7) a. Doch
but

egal,
never.mind

was
what

noch
still

passiert,
happens

der
the

Norddeutsche
North.German

Rundfunk
broadcasting.company

steht
stands

schon
already

jetzt
now

als
as

Gewinner
winner

fest.1

part

‘But never mind what happens, it is already certain that
the Norddeutscher Rundfunk (North German broadcasting
company) will be the winner.’

b. Interessant,
interesting

zu
to

erwähnen,
mention

daß
that

ihre
her

Seele
soul

völlig
completely

in
in

Ordnung
order

war.2

was

‘It is interesting to point out that she was completely sane.’

c. Ein
a

Treppenwitz
stair.joke

der
of.the

Musikgeschichte,
music.history

daß
that

die
the

Kollegen
colleagues

von
of

Rammstein
Rammstein

vor
before

fünf
five

Jahren
years

noch
still

im
in.the

Vorprogramm
before.program

von
of

Sandow
Sandow

spielten.3

played

‘It is an irony of musical history that the colleagues from (the
band) Rammstein were still playing as the support group of
Sandow a few years ago.’

In the sentences in (8) the copula sein (‘be’) has been omitted. The
sentences in (8) correspond to the sentences in (9).

1Spiegel, 12/1999, p. 258
2Michail Bulgakow, Der Meister und Margarita. München: Deutscher Taschen-

buch Verlag. 1997, p. 422
3Flüstern & Schweigen, taz, 12.07.1999, p. 14

96 / Stefan Müller

(8) a. Doch
but

was
what

noch
still

passiert,
happens

ist,
is

egal,
never.mind

. . .

b. Zu
to

erwähnen,
mention

daß
that

ihre
her

Seele
soul

völlig
completely

in
in

Ordnung
order

war,
was

ist
is

interessant.
interesting

c. Daß
that

die
the

Kollegen
colleagues

von
of

Rammstein
Rammstein

vor
before

fünf
five

Jahren
years

noch
still

im
in.the

Vorprogramm
before.program

von
of

Sandow
Sandow

spielten
played

ist
is

ein
a

Treppenwitz
stair.joke

der
of.the

Musikgeschichte.
music.history

The copula as used with adjectives does not contribute semantically,
it merely provides agreement information and the verbal features that
may be needed by other predicates that embed the copula construction
(Paul, 1919, p. 41). As the examples in (7) show, the copula may be
omitted. The result are clauses without a finite verb.

The examples in (7) are declarative sentences, i.e. they should have
the pattern in (6b). (9) is an example for a question. The sentence
corresponds to a verb first sentence with the copula in initial position,
i.e. it should correspond to the pattern in (6a).

(9) Niemand
nobody

da?4

there

‘Is anybody there?’

In order to save the clause type determination one could stipulate a
phonologically empty verb.5 However, Kathol (1995, Chapter 5.4.1)
explicitly rules out the option of domain elements with empty phonol-
ogy values. In (Kathol, 2001, p. 38) he argues against empty elements
so that for him the necessity to stipulate an empty element seems to be
an unwanted consequence of his proposal. In any case, empty elements
are highly abstract entities which have no place in his conception of
non-abstract syntax.

7.2.2 Topic Drop

While the cases of copula ellipsis can be found in novels, news papers,
magazines, and everyday speech, a construction, which is called Vor-
feldellipse or Topic Drop or Pronoun Zap is more restricted to a certain

4Paul (1919, p. 13)
5See Sag, Wasow, and Bender, 2003, p. 464 for the suggestion of an empty verbal

copula for African American Vernacular English.

Elliptical Constructions and Surface-Based Syntax / 97

register/style. Huang (1984), Fries (1988), and Hoffmann (1997) discuss
this construction in some detail. Topic drop is also problematic for
Kathol’s approach: Sentences with Topic Drop look like polar questions
at the surface. If an obligatory complement is dropped, the sentence
is distinguishable from questions since the complement is missing in
the Mittelfeld (9a). If optional complements or adjuncts are dropped,
the form of the sentence is absolutely identical to the form of yes/no
questions (9b).

(10) a. Hab’
have

ich
I

auch
also

gekannt.
known

‘I also knew him/her/it.’

b. Hab’
have

ich
I

auch
also

gegessen.
eaten

‘I also eat him/her/it.’ or (with different intonation) ‘Did I
also eat?’

Such topic drop utterances and polar questions differ only in intonation
and not in the sequence of elements.

In order to save the clause type determination one could assume
a phonologically empty element in the Vorfeld. As was discussed in
Section 7.2.1, Kathol explicitly rejects empty elements.

Alternatively one could stipulate just one more type that constrains
the domain list to contain a slashed verb, as was suggested by a reviewer
of HPSG 2002. While this is technically possible, the commonalities of
sentences with a filled Vorfeld and those that are the result of Topic
Drop would not be captured.

7.2.3 Sentential Complements

Kathol (2000, p. 152) assumes that in (9) the V2 clauses in brackets
are complement clauses:

(11) a. Otto
Otto

glaubt
believes

[die
the

Erde
earth

sei
is

flach].
flat

‘Otto believes that the earth is flat.’

b. die
the

Überzeugung
conviction

/ der
the

Glaube
belief

/ . . . [die
the

Russen
Russians

würden
would

nicht
not

in
in

Polen
Poland

eingreifen]
intervene

‘the conviction/belief/. . . that the Russians would not inter-
vene in Poland.’

98 / Stefan Müller

On page 153 he formulates a Head-V2-Complement Schema that com-
bines a head that takes a finite unmarked clause as complement with
that complement. The schema restricts the clause type of the comple-
ment to be root-decl , i.e., a sentence with the verb in second position.
Kathol’s clausal types are subtypes of the type sign. They refer to
the domain values of a sign which are represented at the outermost
level of a feature structure and therefore the clause types could not be
subtypes of synsem or other types inside of the feature structures con-
tained under synsem and hence the clause type of complements cannot
be selected by governing heads. Therefore Kathol is forced to encode
this combinatorial property in the immediate dominance schemata. In
order to avoid spurious ambiguities Kathol has to restrict the general
head argument schema so that it does not apply when the Head-V2-
Complement Schema applies.

A grammar that uses sufficient subcategorization information and
one head argument schema instead of stipulating several special sche-
mata is more general than what is suggested by Kathol and should
therefore be regarded the better alternative.

7.2.4 Multiple Constituents in the Vorfeld

As far as learnability and non-abstractness are concerned the following
data pose a problem for Kathol:6

(12) a. [Nichts]
nothing

[mit
with

derartigen
those.kinds.of

Entstehungstheorien]
creation.theories

hat
has

es
it

natürlich
of.course

zu
to

tun,
do

wenn
when

. . . 7

‘Of course it has nothing to do with that kind of creation
theory when . . . ’

b. [Trocken]
dry

[durch
through

die
the

Stadt]
town

kommt
comes

man
one

am
at.the

Wochenende
weekend

auch
also

mit
with

der
the

BVG.8

BVG

‘The BVG (Berlin public transport system) will also get you
about town on the weekend without getting wet.’

6(9b–c) are quoted from (Müller, 2002b).
7K. Fleischmann, Verbstellung und Relieftheorie, München, 1973, p. 72. quoted

from (van de Velde, 1978, p. 135).
8taz berlin, 10.07.1998, p. 22

Elliptical Constructions and Surface-Based Syntax / 99

c. [Alle
all

Träume]
dreams

[gleichzeitig]
simultaneously

lassen
let

sich
self

nur
only

selten
rarely

verwirklichen.9

realize

‘All dreams can seldom be realized at once.’

These examples seem to violate the V2 constraint. In a purely surface-
based model without any abstract entities, there is no way to explain
sentences like (8). One could stipulate constructions that combine the
elements before the finite verb so that they form a constituent and
the V2 constraint is saved. However, the data discussed in Müller, 2003
shows that various combinations of material in the Vorfeld are possible.
For instance, we have a depictive secondary predicate and a directional
PP argument in (12b) and an argument and an adverbial in (12c). This
means that the stipulation of several constructions would be necessary
in order to provide the correct meaning for the combination of material
infornt of the finite verb.

If one uses one abstract entity, an empty verbal head as suggested
by Müller (2002b), a stipulation of several constructions would be un-
necessary. The empty verbal head is related to a verb in the remain-
ing clause by a non-local dependency, which constraints the elements
that can appear together in the Vorfeld and makes possible a compo-
sitional assignment of meaning to the sentence. Müller (2002b) uses
a linearization-based model of the Reape/Kathol style to account for
verb-initial and verb-final sentences. In such a model the use of an
empty head is a stipulation. If one returns to a verb movement anal-
ysis as suggested for instance by Kiss and Wesche, 1991, Kiss, 1995
the empty head that is used for verb movement in general can also be
used for the multiple fronting cases in (8). The details of the multiple
fronting analysis for (8) together with a verb movement analysis can
be found in Müller, In Press.

7.3 An Alternative Proposal

In the discussion above, I already hinted at possible solutions to the
problems. For copula less sentences I will assume an empty copula, for
sentential complements of nominal heads, I assume the standard selec-
tional mechanisms and a normal combination of head and argument
via the head-argument-schema. Since the information that is relevant
as far as clause types are concerned is represented under synsem, it
can be selected and no additional ID schemata are necessary. For the

9Brochure from Berliner Sparkasse, 1/1999

100 / Stefan Müller

linearization of the finite verb, I assume a verb movement analysis
(Müller, In Press) and the empty head that is used in this analysis can
also account for the multiple frontings as explained by Müller (2002b,
In Press). What is still missing is an explanation of the distribution
of complementizer and verb, the analysis of topic drop, and the clause
type determination. These issues are dealt with in the following sub-
sections.

7.3.1 Complementizer and Finite Verb

To account for the distribution of complementizer and finite verb, I
suggest returning to the old analysis where verbs have a binary feature
inv that marks whether the verb is serialized head-finally (inv−) or
head-initially (inv+) (Uszkoreit, 1987, Pollard, 1996). Following Pol-
lard (1996, p. 292), I assume inv to be a head feature. I assume that the
complementizer selects for a sentence with the verb in final position,
i.e., for a maximal projection of an inv− verb:

(13) daß
that

[der
the

Mann
man

den
the

Roman
novel

schreibt].
writes

See Kiss, 1995, S. 55–57 for an argumentation for the head status of
complementizers in German.

7.3.2 Topic Drop

The sentences from Huang (1984) in (9) show that both subjects and
objects can be dropped.

(14) a. [Ihn]
him

hab’
have

ich
I

schon
yet

gekannt.
known

‘I knew him.’

b. [Ich]
I

hab’
have

ihn
him

schon
yet

gekannt.
known

The material in brackets may be omitted.
(9) shows that adjuncts can also be omitted:

(15) Die (die Pinguine) kommen so nah ran, daß man sie hätte
streicheln können. Zum Fotografieren zu nah – und zu schnell,
unmöglich da scharf zu stellen.

[Da/Hier]
there/here

Kann
can

man
one

ewig
eternaly

rumkucken.10

around.look

‘The penguins come so close that one could stroke them. One
can look around eternally.’

10In an Email report from the south pole.

Elliptical Constructions and Surface-Based Syntax / 101

The generalization is that things that can be fronted can also be
dropped in the Vorfeldellipse.11 This is captured by the following
schema:
This schema projects a projection of a finite verb in initial position
with an element in slash and binds off this element in slash: Pollard
and Sag’s nonlocal feature principle ensures that the inherited|slash
value of the resulting projection is the empty set. The semantic/discourse
effects of this rule are ignored for the moment.12

The schema is similar to the head-filler-schema that was suggested by
other authors for German verb second sentences (Pollard, 1996, p. 293;
Müller, 1999, p. 97). The only difference is that there is no non-head-
daughter since the Vorfeld is not filled. The commonalities of the two
schemata are captured in the hierarchical organization of dominance
schemata without the reference to surface linearization.

Alternatively one could follow Huang (1984) and use an empty op-
erator that occupies the Vorfeld. In such an approach, it has to be
ensured that this empty element does not occur in other positions.

7.3.3 Clause Types

So far, we can distinguish between verb final and verb initial clauses by
making reference to the value of inv. Since verb first and verb second
sentences are both inv+, we need a further feature to be able to dis-
tinguish these clause types. I suggest naming this feature v2. Normal
verbal projections have the v2 value − and projections that are the
result of the head-filler-schema or the topic-drop-schema are v2+.

Since the v2 feature is located inside of the synsem value of a sign,
nouns like those in (11b) can select for verb second sentences.

7.4 Empty Elements and Grammars

In this section, I want to discuss the relation of grammars with empty
elements to those without empty elements. This will enable us to com-
pare my solution with an empty copula to a solution without empty
elements.

Consider for example the following German sentences:

(16) a. Er
he

hat
has

nur
only

die
the

interessanten
interesting

Bücher
books

gelesen.
read

11This is a simplification: More oblique arguments drop less easily. Space limita-
tions prevent me from going into a detailed discussion, but see the cited references.

12This was critizised by an anonymous reviewer of FG, but it is fully legitimate,
since it is clear where the additional constraints would be located in a fully specified
grammar: The constraints would be attached to the schema above.

102 / Stefan Müller

‘He only read the interesting books.’

b. Er
he

hat
has

nur
only

die
the

interessanten
interesting

gelesen.
read

‘He only read the interesting ones.’

As (8b) shows, nouns may be omitted. This could be captured by the
following simplified phrase structure grammar for NPs.13

(17) np → det, n’ det → die
n’ → adj, n’ adj → interessanten
n’ → n n → Bücher

n → ε

As is known from the literature on formal properties of phrase structure
grammars (Bar-Hillel, Perles, and Shamir, 1961, p. 153, Lemma 4.1),
such grammars can be transformed into grammars without epsilons:
We eliminate all epsilon productions and add new rules for all rules
where elements on the right hand side could be rewritten as the empty
string. For our example this yields:

(18) np → det, n’ det → die
np → det adj → interessanten
n’ → adj, n’ n → Bücher
n’ → adj
n’ → n

The example shows that the transformation of a grammar into an ep-
silon free grammar may increase the number of rules. Similar techniques
of epsilon elemination can be applied to HPSG grammars and in fact
there are processing systems that do such grammar conversion auto-
matically (Meurers, Penn, and Richter, 2002). The grammar in (7) and
the corresponding HPSG equivalent directly encode the claim that the
noun can be ommitted, while this information is only implicitly con-
tained in the rules in (8). The same would be true for a grammar that

13The grammar predicts that all bare determiners can function as full NPs, which
is not empirically correct:

(i) a. Ich
I

helfe
help

den
the

Männern.
men

b. * Ich
I

helfe
help

den.
the

c. Ich
I

helfe
help

denen.
those

References / 103

accounts for copulaless sentences by stipulating several constructions
for questions and declarative sentences with a missing finite verb.

Using grammar transformations to get epsilon-free linguistic descrip-
tions can yield rather complicated rules that do not capture the facts
in an insightful way. This is especially true in cases where two or more
empty elements are eliminated by grammar transformation. While this
is not a problem for computational algorithms that deal with formaly
specified grammars, it is a problem for linguistic specifications. For
more discussion see Müller, 2002a, Chapter 6.2.5.1, In Press.

7.5 Conclusion

I have shown that a theory that requires positions to be filled for cer-
tain clause types is problematic. It cannot cope with elliptic patterns
where no finite verb is present or where an element in the Vorfeld is
omitted. The only possibility to get the data described in such mod-
els is to stipulate several constructions that correspond to the observ-
able patterns. The number of constructions that had to be stipulated
in a construction-based approach would be higher than the number
of empty heads that are needed in more traditional approaches and
generalizations regarding combinations of syntactic material would be
missed.

As an alternative, I suggested that clause types are determined with
reference to features that get instantiated in immediate dominance
schemata. Furthermore I provided an HPSG analysis for copulaless
sentences and Topic Drop in German.

The discussion showed that an entirely surface-based syntax cannot
capture regularities that can be observed in the data in an insightful
way. I therefore suggest returning to more traditional approaches to
German clausal syntax.

Acknowledgements

I thank tree anonymous reviewers of Formal Grammar and two anony-
mous reviewers of HPSG 2002 for comments.

References

Askedal, John Ole. 1986. Zur vergleichenden Stellungsfelderanalyse von
Verbalsätzen und nichtverbalen Satzgliedern. Deutsch als Fremdsprache
23:269–273 and 342–348.

Bar-Hillel, Yehoshua, M. Perles, and E. Shamir. 1961. On formal properties
of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwis-
senschaft und Kommunikationsforschung 14(2):143–172.

104 / Stefan Müller

Bunt, Harry and Arthur van Horck, eds. 1996. Discontinuous Constituency .
No. 6 in Natural Language Processing. Berlin, New York: Mouton de
Gruyter.

den Besten, Hans. 1983. On the interaction of root transformations and
lexical deletive rules. In W. Abraham, ed., On the Formal Syntax of the
Westgermania, pages 47–131. Amsterdam, Philadelphia: John Benjamins
Publishing Company.

Drach, Erich. 1937. Grundgedanken der deutschen Satzlehre. Darmstadt:
Wissenschaftliche Buchgesellschaft. 4., unveränderte Auflage 1963.

Fries, Norbert. 1988. Über das Null-Topik im Deutschen. Forschungspro-
gramm Sprache und Pragmatik 3, Germanistisches Institut der Universität
Lund, Lund.

Gazdar, Gerald, Evan Klein, Geoffrey K. Pullum, and Ivan Sag. 1985. Gen-
eralized Phrase Structure Grammar . Cambridge, Massachusetts: Harvard
University Press.

Hoffmann, Ludger. 1997. Zur Grammatik von Text und Diskurs. In H.-W.
Eroms, G. Stickel, and G. Zifonun, eds., Grammatik der deutschen Sprache,
vol. 7.1, pages 98–591. Berlin, New York: Walter de Gruyter.

Höhle, Tilman N. 1986. Der Begriff
”
Mittelfeld“, Anmerkungen über die The-

orie der topologischen Felder. In W. Weiss, H. E. Wiegand, and M. Reis,
eds., Akten des 7. Internationalen Germanisten-Kongresses, Göttingen
1985 , pages 329–340. Tübingen: Max Niemeyer Verlag.

Huang, C.-T. James. 1984. On the distribution and reference of empty pro-
nouns. Linguistic Inquiry 15(4):531–574.

Kathol, Andreas. 1995. Linearization-Based German Syntax . Ph.D. thesis,
Ohio State University.

Kathol, Andreas. 1997. Concrete minimalism of German. In F.-J. d’Avis and
U. Lutz, eds., Zur Satzstruktur im Deutschen, no. 90 in Arbeitspapiere des
SFB 340, pages 81–106. Tübingen: Eberhard-Karls-Universität Tübingen.

Kathol, Andreas. 2000. Linear Syntax . Oxford University Press.

Kathol, Andreas. 2001. Positional effects in a monostratal grammar of Ger-
man. Journal of Linguistics 37(1):35–66.

Kiss, Tibor. 1995. Infinite Komplementation. Tübingen: Max Niemeyer
Verlag.

Kiss, Tibor and Birgit Wesche. 1991. Verb order and head movement. In
O. Herzog and C.-R. Rollinger, eds., Text Understanding in LILOG, pages
216–242. Springer-Verlag.

Meurers, Walt Detmar, Gerald Penn, and Frank Richter. 2002. A web-based
instructional platform for constraint-based grammar formalisms and pars-
ing. In D. Radev and C. Brew, eds., Effective Tools and Methodologies for
Teaching NLP and CL, pages 18–25. Proceedings of the Workshop held
at 40th Annual Meeting of the Association for Computational Linguistics.
Philadelphia, PA.

References / 105

Müller, Stefan. 1999. Deutsche Syntax deklarativ. Head-Driven Phrase Struc-
ture Grammar für das Deutsche. Tübingen: Max Niemeyer Verlag.

Müller, Stefan. 2002a. Complex Predicates: Verbal Complexes, Resulta-
tive Constructions, and Particle Verbs in German. No. 13 in Stud-
ies in Constraint-Based Lexicalism. Stanford: CSLI Publications. http:
//www.cl.uni-bremen.de/˜stefan/Pub/complex.html. 14.06.2004.

Müller, Stefan. 2002b. Multiple frontings in German. In G. Jäger, P. Monach-
esi, G. Penn, and S. Winter, eds., Proceedings of Formal Grammar 2002 ,
pages 113–124. Trento.

Müller, Stefan. 2003. Mehrfache Vorfeldbesetzung. Deutsche Sprache
31(1):29–62. http://www.cl.uni-bremen.de/˜stefan/Pub/mehr-vf-ds.
html. 14.06.2004.

Müller, Stefan. In Press. Zur Analyse der scheinbar mehrfachen Vorfeldbeset-
zung. Linguistische Berichte 199. http://www.cl.uni-bremen.de/˜stefan/
Pub/mehr-vf-lb.html. 14.06.2004.

Paul, Hermann. 1919. Deutsche Grammatik. Teil IV: Syntax , vol. 3. Halle an
der Saale: Max Niemeyer Verlag. 2nd unchanged edition1968, Tübingen:
Max Niemeyer Verlag.

Pollard, Carl J. 1996. On head non-movement. In Bunt and van Horck
(1996), pages 279–305. Published version of a Ms. dated January 1990.

Reape, Mike. 1992. A Formal Theory of Word Order: A Case Study in West
Germanic. Ph.D. thesis, University of Edinburgh.

Reape, Mike. 1994. Domain union and word order variation in German. In
J. Nerbonne, K. Netter, and C. J. Pollard, eds., German in Head-Driven
Phrase Structure Grammar , pages 151–198. Stanford: CSLI Publications.

Reape, Mike. 1996. Getting things in order. In Bunt and van Horck (1996),
pages 209–253. Published version of a Ms. dated January 1990.

Reis, Marga. 1980. On justifying topological frames: ‘positional field’ and the
order of nonverbal constituents in German. Documentation et Recherche
en Linguistique Allemande Contemporaine 22/23:59–85.

Sag, Ivan A., Thomas Wasow, and Emily M. Bender. 2003. Syntactic Theory:
A Formal Introduction. No. 152 in CSLI Lecture Notes. Stanford: CSLI
Publications, 2nd edn.

Thiersch, Craig L. 1978. Topics in German Syntax . Dissertation, M.I.T.

Uszkoreit, Hans. 1987. Word Order and Constituent Structure in German.
No. 8 in CSLI Lecture Notes. Stanford: CSLI Publications.

van de Velde, Marc. 1978. Zur mehrfachen Vorfeldbesetzung im Deutschen.
In M.-E. Conte, A. G. Ramat, and P. Ramat, eds., Wortstellung und Be-
deutung , pages 131–141. Tübingen: Max Niemeyer Verlag.

106 / Stefan Müller

phrasal-sign

head-dtr | synsem

local

cat

head

verb

[

vform fin

inv +

]

subcat 〈〉

nonloc

inher | slash
{

1

}

to-bind | slash
{

1

}

8

Type-Logical HPSG
Carl Pollard

8.1 Introduction

Pullum and Scholz (2001) bifurcate 20th-century syntactic research
frameworks into two principal paradigms: model-theoretic syntax (MTS,
e.g. arc pair grammar, construction grammar, and HPSG) and genera-
tive-enumerative syntax (GES, e.g. transformational grammar and cat-
egorial grammar, including type-logical grammar (TLG)). Pullum and
Scholz argue on empirical grounds for the superiority of MTS over
GES. Although I think their arguments are vulnerable to criticism on
a number of counts, my purpose here is not to criticize MTS but rather
to argue that one need not choose between MTS and GES. More pre-
cisely, I propose a framework, higher-order grammar (hereafter HOG)
which at once embodies both model-theoretic and proof-theoretic as-
pects. To put it another way, HOG is in the intersection of the MTS
and GES paradigms; its MTS and GES aspects are not in competition,
but rather complementary.

The comparison between TLG (Morrill, 1994, Moortgat, 1997) and
HPSG (Pollard and Sag, 1994) is of particular interest because, among
all the widely employed syntactic frameworks, they have been espe-
cially committed to explicit formalization of linguistic theory within
logic. Given this shared concern with formal precision (to say noth-
ing of other commonalities such as lexicocentrism and concern with
computational tractability), one might well wonder why the research
communities associated with these two frameworks have not merged
into a single community. The principal scientific reason for the separa-
tion is that the logical foundations of the two frameworks are seemingly

107

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

108 / Carl Pollard

incompatible.

Leaving aside for the moment semantic interpretation, in TLG words
(thought of as prosodic/phonological entities) are assigned to types—
formulas in a resource-sensitive logic (usually an elaboration of Lam-
bek’s 1958, 1961 syntactic calculus) and then the assignment is ex-
tended to word strings by well-known proof-theoretic means. In HPSG,
by contrast, one starts with a set of “candidate” structures (in the
terminology of Carpenter (1992), the totally well-typed, sort-resolved,
inequation-resolved feature structures over a given signature of sorts
and features), and then discards the ones that fail to satisfy the gram-
mar, a set of axioms (grammatical constraints) written in a (quite id-
iosyncratic) classical propositional logic, viz. RSRL (Richter, 2000).
TLG, then, is a GES framework because the derivations are (at least)
recursively enumerable, whereas HPSG is a MTS framework because
the well-formed structures are models of the logical theory axiomatized
by the constraints. It would appear, then, that the logics underlying the
two frameworks bear no interesting relationship. But as will be shown
presently, linguistic type logics and linguistic constraint logics can be
seen to be intimately related, if viewed from a higher-order perspective.

HOG is an outgrowth of research over the past several years aimed
at solving some of HPSG’s foundational problems, which mostly arise
from the absence of functional types. Once we opt for a classical logic
with functional types for expressing linguistic constraints, some form
or other of higher-order logic (HOL) naturally suggests itself. In fact,
the use HOL for linguistic description has been advocated by others
(e.g., Moshier, 1999, Ranta, In press, Penn and Hoetmer, 2003). The
present proposal, however, is unique in two respects. First, HOG em-
ploys a single HOL for all three of syntax, semantics, and phonology (as
well as the syntax-semantics and syntax-phonology interfaces). Corre-
spondingly, as in HPSG, syntactic, semantic, and phonological entities
inhabit a model of a grammar. And second, HOG exploits the for-
mal parallel between, on the one hand, the cartesian type constructors
(product (×) and exponential (⇒)) of the typed lambda calculus that
underly HOL and, on the other hand, the tensor type constructors (ten-
sor product and directional slashes) of the Lambek calculus, thereby
enabling analogs of linguistic analyses originating within TLG to be
developed in an MTS setting. (A third difference, namely that HOG is
categorical in the sense that the types and entities of a given natural
language are construed, respectively, as objects and arrows of a cate-
gory, with phonological and semantic intepretation as endofunctors, is
discussed in (Pollard, 2004).)

Type-Logical HPSG / 109

8.2 HOG and HPSG

To clarify the connection with HPSG, a HOG can be characterized
roughly as follows. (1) The grammar is is written in a classical HOL
rather than in RSRL. Thus HOG is free of the idiosyncrasies of RSRL
such as chains (Richter, 2000) and the concomitant undecidability of fi-
nite model-checking (Kepser, 2001). (2) The types of the HOL replace
HPSG’s features structure types. More specifically, feature structure
types become indexed product types (Barr and Wells, 1999) HPSG
partitions of a type are expressed as coproducts (model-theoretically,
disjoint unions), and types set-of[A] are realized as functional types
A⇒ Bool. (3) A sign is modelled not by a feature structure but rather
by the denotation (in a model of the grammar) of a closed term. (4)
Unlike HPSG, HOG does not have a type Sign; instead signs are of
many types (namely the ones where the interpretive endofunctors are
defined). (5) “Unsaturated” signs (in HPSG terms, signs with non-null
valence features) have functional types. Hence there are no valence
features, so the perennial problem of how to instantiate undischarged
valence features (e.g. the subject of the infinitive in to err is human) to
satisfy total well-typedness does not arise. (6) Semantic interpretation,
treated in HPSG as just another feature (content) of signs, is treated
in HOG as a (schematic polymorphic) function from signs to seman-
tic entities, that is, a type-indexed family of functions each of whose
domains is one of the sign types. Since the HOL is already a lambda
calculus, there is no need to encode Ty2 terms as features structures
or lambda conversion as an RSRL relation (Richter and Sailer, 2003).
(7) Analogously, phonological interpretation, also treated in HPSG as
a feature (phonology) of signs, is a (schematic polymorphic) function
from signs to phonological entities. Constraints on phonological entities
(e.g. phonotactic constraints) can then be expressed directly as nonlog-
ical axioms of the grammar. (8) Since there is just equality simpliciter
rather than a distinction between type identity and token identity, the
framework is free of Höhle’s Problem (that a sentence containing two
occurrences of the same sign is spuriously ambiguous as to whether the
occurrences are type-identical or merely token identical). Some of these
these points will be elaborated below; others are discussed elsewhere
(as specified).

8.3 HOG resolves the MTS-GES dichotomy

The HOG architecture provides insight into the relationship between
TLG’s type logic and HPSG’s constraint logic, since it has analogs of
both. The HOG analog of TLG’s type logic is just the HOL’s type

110 / Carl Pollard

system, which, as for any typed lambda calculus ((Curry and Feys,
1958, Howard, 1980) forms an intuitionistic propositional logic with
the type constructors as the logical connectives (though not a resource-
sensitive one as in TLG). And the HOG analog of HPSG’s constraint
logic (RSRL) is just the higher-order logic of terms: both are quantifi-
cational logics with all the familiar boolean connectives, and both are
used to impose well-formedness constraints on linguistic entities. TLG,
however, lacks an analogue of the constraint logic. In HPSG, on the
other hand, what is missing is the type logic. But in HOG there is both
a type logic and a constraint logic, and the latter is the proof term cal-
culus of the former. Thus any grammar will be a theory written in the
HOL of choice, and in a model of that theory, any entity of a given type
will satisfy all the constraints that the grammar imposes on entities of
that type. In this respect HOG is an MTS framework (like HPSG). But
at the same time, any one of the family of equivalent terms denoting
that entity encodes (as per Curry-Howard) a natural-deduction proof
of its type. So as long as grammars are written in such a way to ensure
that the set of signs of type S (which is in one-to-one correspondence
with the set of normalized proofs of type S) is recursively enumerable,
HOG is also a GES framework.

8.4 The Logic

HOL (with two types, here called Bool (truth values) and Ent (entities),
and the single type constructor ⇒), was first placed on a firm foot-
ing in the form of Church’s 1940 simple theory of types (STT), which
moved the term equivalence of the simply-typed lambda calculus into
the object language and added constants to serve as logical connectives
and quantifiers. Henkin (1950) reaxiomatized STT, added the axiom
of propositional extensionality, and proved completeness with respect
to the class of models which now bear his name, viz. general Henkin
models (here ‘general’ means that there need only be enough functions
to interpret all closed functional terms). Gallin (1975) showed that Ty2
(obtained by adding a type World to Henkin’s HOL) was equivalent in
a clearly defined sense to Montague’s intensional logic IL (equipped
with a suitable proof theory).

As pleasant to work with (and familiar to linguists) as Ty2 is, it
is somewhat too blunt an instrument to serve as a general linguistic
formalism, even with the addition of arbitrarily many basic types. Ex-
perimentation over the past several years points to the need for the
following features absent in Ty2:

Type-Logical HPSG / 111

Indexed Products. The (cartesian) product type constructor ×
(conjunction, in terms of the type logic), together with corresponding
projection terms and pairing term constructor, is a standard feature of
many HOLs and functional programming languges. This makes curry-
ing of functions an option rather than a necessity. Even better is the
addition of indexed products, which allow the factors in product types
to be indexed by arbitrary sets of labels (feature names) rather than
just by natural numbers (so that the indexed projection functions are
the features). Indexed products are a more standard way of doing what
linguists do with feature structures.

Coproducts. The (cartesian) coproduct type constructor + (disjunc-
tion in the type logic, with corresponding injection functions and co-
pairing term constructor) is interpreted as disjoint union in the models
and is therefore ideally suited for partitioning types, as in HPSG type
hierarchies.

The addition of product and coproduct (including nullary 1 and 0
respectively) to the original exponential (⇒) constructor makes the
type logic into a full intutionistic propositional logic.

Separation types. Separation types (so-called by analogy with the
set-theoretic axiom of separation), are subtypes defined by restricting
a given type by an open boolean term, e.g. given S as a primitive type,
we can define the subtype of finite sentences as the separation type

Sfin =def [x ∈ S| Vform(x) = fin]

The (separation) subtypes of any given type should form a boolean
algebra. For example, to implement the now-standard analysis of case
syncretism (Bayer and Johnson, 1995), given types NPacc and NPgen,
we would like to define the type of syncretic accusative-genitive noun
phrases as

NPnom acc =def [x ∈ NP | Case(x) = nom acc] = NPnom ∩ NPacc

Natural Number Type. Incorporation of a natural number type
Nat is another standard feature, which in effect builds an analog of
the set-theoretic axiom of infinity into the logic and, inter alia, makes
the Kleene-* (string) type constructor definable. That is, for each type
A there is a type A∗ with the expected behavior of strings (see (Pol-
lard and Hana, 2003) for linguistic motivation and application to the
analysis of coordination).

Schematic polymorphism. From its inception HPSG has employed,
at least informally, some notion of parametric polymorphism (e.g. for

112 / Carl Pollard

sets or lists all of whose members are to be of the same type A). In
HOG we already have strings (A∗) and sets (A ⇒ Bool), but there
is still a need for limited polymorphism, e.g to define the semantic
and phonological interpretation functions across the kind of sign types.
Experience thus far suggests that schematic (or abbreviatory) polymor-
phism is sufficient; that is, no new types (or quantification over types)
are introduced, but a family of functions can be defined schematically
across a family of types (here, the sign types).

The higher-order categorical logic of Lambek and Scott (1986) pro-
vides a good point of departure for satisfying the foregoing desider-
ata: it has products, (definable) coproducts, natural number type, and
(separation) subtypes. Moreover the subtypes of a given type form a
Heyting algebra, which becomes boolean once the boolean axiom is im-
posed. This is still a bit too general, because the type of truth values
(usually called Ω) can be an arbitrary Boolean algebra (so there can
be truth values other than true and false); so in order to get bivalence
it is also necessary to impose the type identity Ω = 1 + 1, with Ω
being the truth value type and true and false being the canonical in-
jections. (This then justifies the renaming of Ω to Bool.) The models
of the resulting logic are categories (abstract mathematical universes)
called bivalent boolean toposes abstract models of typed lambda calcu-
lus with enough additional structure to interpret a propositional type
and associated logical constants. Henkin models (when so augmented)
are special cases of these. (Readers unfamiliar with category theory
can just think of Henkin models augmented with cartesian products
and lambda-definable subtypes without being led seriously astray.)

8.5 Syntax

A higher-order grammar is given by specifying three things: (1) the
basic types; (2) the basic nonlogical constants (including their types);
and (3) the constraints (nonlogical axioms).

Basic types. For purposes of discussion we present a HOG for a
simple fragment of English (with noun and verb as the only parts of
speech), starting with the following basic types: Phon (phonemes); S
(sentences); NP (noun phrases, for the moment limited to nonquantifi-
cational ones); N (common noun(phrase)s, setting aside the the ques-
tion of whether N should be analyzed as the head of NP); Prop (propo-
sitions, the semantic interpretations of declarative sentences); Ind (in-
dividual concepts, the semantic interpretations of noun phrases); and
Ent (entities, the kinds of things that can be the extensions of individ-
ual concepts). (Note that the type Bool of truth values, the extensions

Type-Logical HPSG / 113

of propositions, is already supplied by the logic.) For notational conve-
nience we also provide types for the values of what are treated in HPSG
as nonboolean head features in HPSG, such as Vform (verb inflected
form), Case (case), and Agr (noun agreement).

Basic constants. Next, we add the basic nonlogical constants. For
example, to say that nom is a case value we include in the grammar
the basic constant nom : 1→ Case, which for familiarity we write as

nom ∈ Case

This means that in a model, nom is interpreted as a member of the
set that interprets the type symbol Case (more precisely, as a function
whose codomain is that set and whose domain is the singleton set {0}).

Next we add functions which play the same role in HOG that head
features play in HPSG, e.g.

Case ∈ (NP⇒ Case)
Agr ∈ (NP⇒ Agr)
Vform ∈ (S⇒ Vform)
Aux ∈ (S⇒ Bool)
Inv ∈ (S⇒ Bool)

We turn next to the specification of the lexicon. For example, to in-
clude the word she as a nominative third-singular-feminine nominative
noun, we add the specification

she ∈ NPnom/3fs
where the target type is defined as follows:
NPnom/3fs =def [x ∈ NP | Case(x) = nom ∧ Agr(x) = 3fs]

Note that the definition does not bring the defined type into exis-
tence! Its existence is a consequence of the existence of the basic type
NP, together with the subtyping provided by the logic; the definition
merely provides a handy abbreviation. It is important to be aware that
the entity that interprets the constant she is to be thought of as mod-
elling the word she qua syntactic entity; it is not a phonological entity.
(So far we have said nothing about what the syntactic word she sounds
like). The view of signs (syntactic words and phrases) as inhabitants of
syntactic types originates with Lambek’s 1988, 1999 categorical view of
his own syntactic calculus. The principal difference between Lambek’s
approach and the one advocated here is that they employ different type
logics: Lambek calculus vs. intuitionistic propositional logic.

Next we add a couple of finite third-singular verbs to the lexicon
(the definitions of the various subtypes of S and NP employed should
be obvious):

swims ∈ VP3s/main =def (NPnom/3s⇒ Sfin/main)

114 / Carl Pollard

sees ∈ TVP3s/main =def (NP⇒ (NPnom/3s⇒ Sfin/main))

These lexical items parallel lexical type assignments in TLG, but
there are (at least) three important differences. First, the product and
exponential type constructors involved are cartesian, not tensor. Sec-
ond, there is no mention of phonology (no pairing of word strings
with types). And third, words (and phrases) actually inhabit their
types, rather than just being assigned to them. In the model, this
means that, e.g., the word swims (i.e. the interpretation of the constant
swims) is a member of the set of third-singular main (i.e. nonauxiliary)
verb(phrase)s; in Curry-Howard terms, it means that swims encodes a
(one-line) derivation (proof) of the formula VP3s/main.

Note that the lexical entry for sees above assigns it a curried type.
But we could just as well have given the lexical entry as

sees† ∈ ((NP×NPnom/3s)⇒ Sfin/main)

where the antecedent type is now suggestive of an HPSG Subcat
list. In fact, because of the adjoint relationship between× and⇒, either
lexical entry implies the existence of the other:

sees† = uncurry(sees)
sees = curry(sees†);
thus whether lexical entries are curried or uncurried is strictly a

matter of convenience.
In HPSG (as in relational grammar and lexical-functional grammar),

grammatical functions (such as subject and complement) are taken as
theoretical primitives rather than defined (as has usually been done
in categorial grammar) in terms of order of functional application. In
HOG, primitive grammatical functions are naturally implemented as
contrafeatures, i.e. indices of indexed product types that occur as the
antecedent in an implicative type:

TVP3s/main =def ((Comp : NP,Subj : NPnom/3s)⇒ Sfin/main)

This development is discussed further in the full paper; for now we
just mention that by using natural generalizations of currying and ap-
plication to the case of indexed products, it is easy to show that the
analogs of standard HPSG constraints (specifically the Head Feature
Principle and the Valence Principle) are just instances of modus po-
nens with respect to the type logic. Suitably refined, this technique
is also applicable to constructors corresponding to HPSG features for
handling various types of unbounded dependencies such as Slash (for
“wh-movement” gaps, including parasitic gaps), Rel (for pied-piped
relative pronouns), and Qstore (for unscoped quantificational NPs),
etc.

Type-Logical HPSG / 115

To illustrate, a simple example is provided of how phrasal signs come
about (ignoring morphosyntactic features in order to simplify the ex-
position). Assuming we are given the three lexical entries kim ∈ NP,
sandy ∈ NP, and sees ∈ TVP, we can form the term sees(sandy)(kim) ∈
S by successive functional application. In a model, this term denotes a
certain sentence (i.e. member of the set that interprets the type S). This
sentence will be mapped by the semantic interpretation functor to a cer-
tain proposition (member of the set that interprets the type Prop), and
by the phonological interpretation functor to a certain string of phono-
logical words (member of the set that interprets the type Phoneme∗∗).
In terms of the type logic, this term corresponds to a certain intuition-
istic proof that uses modus ponens twice to prove the atomic formula S
from the premises NP, NP, and NP⇒ (NP⇒ S). Thus the relationship
between the derivation of the sentence and the sentence itself is that,
literally, the latter is the model-theoretic interpretation of the former.
Thus, in the HOG setting, the Curry-Howard isomorphism resolves the
distinction between type-logical and constraint-based grammar.

Syntactic constraints (nonlogical axioms). As noted above, some
well-established HPSG constraints, such as the Head Feature Principle
and the Valence Principle, whose essential purpose is to simulate func-
tional application, come for free. Others, such as the constraints that
govern the “discharge” of Nonlocal features, can presumably be ab-
sorbed into the general machinery for handling the corresponding type
constructors (as is done in TLG), but others may have to be stated as
nonlogical axioms, e.g. the English constraints on nested dependencies,
which differ from (say) the Swedish ones; constraints on the distri-
bution of parasitic gaps; the constraint that Que-binding is possible
at infinite VP or finite S but nowhere else; the pan-Germanic (but not
pan-Slavic) constraint that Slash-binders (or Vorfeld occupants) must
be “constituents” (i.e. cannot be of cartesian product types).

One type of syntactic constraint that is straightforwardly dealt with
in HOG is feature co-occurrence restrictions. For example the contraint
that in English inverted sentences must be headed by a finite auxiliary
can be expresseed as a nonlogical axiom:

∀x(Inv(x)⇒ (Aux(x) ∧Vform(x) = fin))

where x is a variable of type S. To take another example, consider
the hypothesis that, in Polish, nominative and accusative case never
syncretize. This can be expressed by the nonlogical axiom

¬∃x(x = x)

where x is a variable of type NPnom acc.

116 / Carl Pollard

8.6 Semantics

The HOG approach to semantic interpretation follows up a sugges-
tion due to (Montague, 1974, 263). Recall that in PTQ, translation
is treated as a relation between English expressions (in the sense of
strings of basic expressions) and terms of Montague’s intensional logic
IL. Montague’s suggestion is to revise the grammar architecture so
translation becomes a function from derivations (PTQ analysis trees)
to IL terms. But our sign-denoting terms can be thought of as encoding
proofs, which are analogous to PTQ-style analysis trees; so we imple-
ment Montague’s suggestion by treating semantic interpretation as a
translation from syntactic terms to semantic terms. Following Lam-
bek and Scott (1986), here translation means that: (1) each sign type
translates to a semantic type; (2) cartesian products translate to carte-
sian products; (3) basic terms of a given sign type translate to closed
terms of the corresponding semantic type; (4) the translation extends
uniquely to all terms by translating lambda abstraction to lambda ab-
straction, application to application, and pairing to pairing. In short,
translation preserves all lambda-calculus constructs. Additionally, se-
mantic interpretation is required to be a logical translation (i.e. to
preserve all logical constants). This is a very strong hypothesis about
the nature of the syntax-semantics interface, and one that is not easily
expressible in HPSG.

The details of the semantic translation are discussed elsewhere. For
now we just note that the proposed semantics is hyperintensional in
the sense of being finer-grained than the usual intensional semantics;
i.e. two signs can have interpretations whose denotations coincide in
every world, yet are distinct. The trick is to take propositions as prim-
itive, and entailment as (an appropriately axiomatized) preorder on
propositions (i.e. a constant of type (Prop× Prop) ⇒ Bool) and then
use subtyping to define the type of worlds as the type of all subsets of
the set of propositions which are ultrafilters (maximal consistent sets)
relative to the entailment preorder. The hyperintensionality is a con-
sequence of the fact that entailment is only a preorder, not an order
(so e.g. two distinct propositions can entail each other). See (Pollard,
in preparation) for details.

The upshot is that semantic interpretation is a (schematic polymor-
phic) function semA whose domain is the sign types, with NP and S
mapping to Ind and Prop (propositions) respectively. The semantic
types for the translations of signs belonging to nonbasic sign types is
then determined by the requirement that semantic interpretation be a
logical translation (as described above). The semantic interpretations

Type-Logical HPSG / 117

of lexical signs are assigned by constraints such as:

sem(kim) = kim′

sem(sandy) = sandy’
sem(sees) = see’

which in concert with the logical translation condition, uniquely de-
termines semantic interpretation for all signs. For example:

sem(sees(sandy)(kim)) = (sem(sees))(sem(sandy))(sem(kim)) =
= see’(sandy’)(kim’)

8.7 Phonology

HOG phonology can be summarized in one sentence: phonological in-
terpretation, like semantic interpretation, is a logical translation. This
entails, inter alia, the following things: (1) It is impossible to tell by
looking at (the term denoting) a sign what it sounds like. (2) Phonolog-
ical entities are in the model and denoted by lambda terms. (3) Phono-
logical interpretation is a translation from terms that denote signs to
terms that denote phonological entities. (4) Such a translation is speci-
fied by defining it on lexical signs; the extension to phrases is uniquely
determined by the requirment that phonological interpretation be a
logical translation. (5) The HOL can be used to express phonotactic
constraints.

This may sound like a radical program for phonology, but a good
deal of it is historically grounded. The first point is closely connected
with Curry’s 1961 version of type-logical syntax, which insisted on a
clean separation between abstract syntactic combinatorics (in Curry’s
term, tectogrammar), and the concrete realizations of syntactic entities
(phenogrammar); in fact, Curry faulted Lambek’s calculus for failing to
maintain this distinction. The second point is prefigured in categorial
phonology (Wheeler, 1981). The third point has a precursor in (Oehrle,
1994) (however, Oehrle’s language of phonological terms did not form
a logic).

The following sketch of HOG phonology is necessarily simplified and
limited to segmental phonology. Our point of departure is the basic
type Phoneme, so that phonological words have type Phonword =def

Phoneme∗ and the phonological interpretations of syntactically satu-
rated signs are strings of phonological words (type Phonword∗). Phono-
logical features for phonemes can be handled formally on a par with
head features for saturated signs, and natural classes can be defined
as subtypes of the type Phoneme. Phonotactic constraints can be ex-
pressed as nonlogical axioms, but first the phonological ontology has to

118 / Carl Pollard

be enriched to include the kinds of entities to be constrained (e.g. syl-
lables).

As with semantic interpretation, the value of the phonological inter-
pretation functor phon on signs is uniquely determined by the values
on the lexical signs (which are specified by grammatical constraints) in
concert with the condition that phonological interpretation be a logical
translation. As noted above, for the saturated sign types NP and S, the
corresponding phonological type is Phonword∗, and so, for example, the
phonological interpretation of a sign of type VP =def (NP⇒ S) (dis-
regarding coordinate structures) is of type Phonword∗ ⇒ Phonword∗,
and the phonological interpretation of a sign of type TVP is of type
Phonword∗ ⇒ (Phonword∗ ⇒ Phonword∗).

A few examples should suffice to make this concrete. To enhance
readability, we omit the type subscript on polymophically typed con-
stants. Additionally, we employ the standard notational abuse whereby
what should denote a phonological word actually denotes a string of
phonological words of length one, e.g. /kIm/ instead of 〈/kIm/〉; in fact,
we compound the abuse by writing, e.g. /siz, kIm/ instead of 〈/siz/,
/kIm/〉. Also, eA denotes the null A-string and ∧

A denotes the polymor-
phically typed concatenation operator

∧
A ∈ (A∗ ⇒ (A∗ ⇒ A∗))

These are subject to the following (type-schematized) monoid con-
straints (with the variables all of type A):

∀x(e∧x = x)
∀x(x∧e = x)
∀x, y, z((x∧y)∧z = x∧(y∧z))

Note that these are nonlogical axioms of the grammar, not a met-
alinguistically imposed term equivalence as in (Oehrle, 1994).

Phonological interpretations are assigned to lexical signs by nonlog-
ical axioms such as the following:

phon(kim) = /kIm/
phon(sandy) = /sændi/
phon(sees) = λxλy.y∧/siz/∧x

Just as with semantic interpretation, phonological interpretation of
nonlexical signs is uniquely determined by logical functoriality. For ex-
ample:

phon(sees(sandy)(kim)) = (phon(sees))(phon(sandy))(phon(kim)) =
(λxλy.y∧/siz/∧x)(/sændi/)(/kIm/) = /kIm, siz, sændi/

Note that the lexical entry for sees ensures that the first and second
syntactic arguments (object and subject respectively) are phonologi-

Type-Logical HPSG / 119

cally realized to the right and to the left of /siz/. This is why there is
no need to split the ⇒ constructor into \ and /: the directionality of
combination is moved out of the syntax and into the phonology (and its
interface with syntax). More generally, the resource sensitivity of lan-
guage is relocated from syntax (where TLG has it) into the phonology;
thus the syntactic type logic is not a Lambek calculus but just an or-
dinary intuitionistic propositional logic with all three of the structural
rules (contraction, interchange, and weakening).

This point is perhaps best conveyed in an intuitive, nontechnical way
as follows: in TLG, the syntax has to keep track of word order and word
occurrences, hence the need for a directional and linear syntactic type
theory. But in HOG, the syntax is freed of this responsibility, because
every time a syntactic word is used in a derivation, an occurrence of its
phonological interpretation shows up, appropriately linearized, in the
string of phonological words. Adapting the sort of economic metaphor
favored by linear logicians: logical constants come for free, but every
time you use a nonlogical constant in a syntactic proof, you have to
pay for it with a spoken word (by saying its name out loud).

As is well known (Zaenen and Karttunen, 1984, Sag et al., 1985, Pul-
lum and Zwicky, 1986) any syntactic theory must distinguish between
ambiguity (two or more signs with the same phonology) and something
else variously known as neutrality, nondistinctiveness, syncretism, in-
determinacy, or underspecification. Here we sketch the HOG treatment
of this distinction, starting with ambiguity. In the simplest case (so-
called argument ambiguity), we have two distinct words with the same
phonological interpretation, e.g., bank ‘riverside’ and bank ‘financial
institution’:

bank1 ∈ N
bank2 ∈ N

General properties of the cartesian product (and the associated pro-
jection terms and pairing term constructor) ensure that the presence
of these two lexical entries is equivalent to the presence of the single
conjunctive specification

(bank1, bank2) ∈ N×N

Of more interest is so-called functor ambiguity, where the two signs
in question both have implicative types with the same consequent,
e.g. main verb can and modal can:

a. I can tuna.
b. I can get a better job if I want to.
c.*I can tuna and get a better job if I want to.

120 / Carl Pollard

In this case the pair of ambiguous words has type (ignoring mor-
phosyntactic features)

(NP⇒ VP)× (VP⇒ VP)

which, by the intuitionistically valid law of disjunctive syllogism and
its converse, is equivalent (in the sense that the functions denoted by
the proofs in both directions are each other’s inverses) to the type

(NP + VP)⇒ VP

Intuitively, since + (cartesian coproduct) is disjunction in the type
logic, this says that can can take as its complement something which is
either an NP or a VP (but not, as will be shown below, a coordination
of an NP and a VP, which is neither). Formally, this treatment paral-
lels the standard TLG treatment of ambiguity in Morrill (1990), which
also employs cartesian coproduct (written ∨ in the Lambek calculus
setting, where in terms of the type logic it is linear additive disjunc-
tion, in spite of being incorrectly characterized as boolean in most of
the relevant TLG literature). Unfortunately, the standard TLG treat-
ment of coordination (Morrill, 1990, Bayer and Johnson, 1995, Bayer,
1996, hereafter MBJ), which builds on Steedman’s polymorphic typing
of coordinate conjunctions as A\A/A, wrongly generates such ungram-
matical examples side by side with grammatical examples such as

John is rich and an excellent cook.

because coordinate structures are analyzed as having disjunctive
types (here AP ∨ NP, with the neutral functor is receiving the lexi-
cal type assignment VP/(AP ∨ NP)). Thus the TLG account fails to
distinguish functor ambiguity from functor neutrality. To take another
example, the MBJ account predicts both of the following to be gram-
matical:

a. *Mary wants to go and John to go.
b. I would like to leave town early and for you to go with me.

As pointed out by Whitman (2002), the MBJ account also fails
to distinguish between argument ambiguity and argument neutrality
(which includes case syncretism as a special case), so that all instances
of homophony between slots in the inflectional paradigm of a word are
wrongly predicted to syncretize (see Dyla (1984) for relevant counterex-
amples). Moreover, the MBJ account is inconsistent with the standard
TLG frame-semantics approach to phonological interpretation (Heylen,
1996, 1997, Moortgat, 1997, Carpenter, 1998). On that account, if S is
the stringset that phonologically interprets AP and T is the stringset
that phonologically interprets NP, then rich and an excellent cook
should be in their union; hence it must lie in either S or in T ; but

Type-Logical HPSG / 121

it does not. Faced with these difficulties, Whitman suggests abandon-
ing the syntactic distinction between ambiguity and neutrality (so that
in principle neutralization is always an option, subject only to prag-
matic factors). Alternatively, Morrill (p.c.) suggests the possibility of
distinct phonological entities with no audible difference (more precisely,
a phonological entity is not just a string, but rather an ordered pair of
a string and an integer).

Some of the problems discussed above have also been addressed
within recent HPSG literature, most recently by Sag (2003), which
proposes a relaxation of the requirement that feature structures be
sort-resolved. In the absence of a precise formalization, this proposal is
hard to assess. (Note that the model theory of RSRL precludes any en-
tities which belong to a sort without belonging to one of its maximally
specific subsorts.)

Pollard and Hana (2003) propose the following HOG analysis of neu-
trality and coordination of unlikes. First, the treatment of syncretism
(say, for a language with nominative and accusative case) follows Levine
et al. (2001) in employing a nonstandard inventory of Case values:
pnom (pure nominative), pacc (pure accusative), and nom acc (syn-
cretic between nominative and accusative). Then NPnom and NPacc
are defined as subtypes of NP as follows:

NPnom =def [x ∈ NP | Case(x) = pnom ∨ Case(x) = nom acc]
NPacc =def [x ∈ NP | Case(x) = pacc ∨ Case(x) = nom acc]

Also we define

NPnom acc =def [x ∈ N | Case(x) = nom acc] = NPnom∩NPacc

That is, case syncretism is handled not by the type logic’s conjunc-
tion (cartesian product, which is appropriate only for non-neutralizing
ambiguity) but rather by the (genuinely boolean) intersection of sepa-
ration subtypes.

Pollard and Hana’s analysis of coordination employs a schematic
polymorphic type GEN[A] where A can be instantiated as any type of
kind Sign. That is, for each sign type A, there is a type GEN[A] of
“generalized A”, where a generalized A is a sign that is either an A or
a coordinate structure whose conjuncts are generalized A′s. To ensure
that, for each sign type A, A is actually a subtype of GEN[A], we add
to the term logic a type-schematized family of constants genA ∈ (A⇒
GEN[A]) together with a type-schematized set of constraints which
ensure that in any model, each sign type is embedded in a one-to-one
fashion into its generalization. (In the model, each of these constants is
interpreted as a function that maps each sign of a certain type into a
string of signs of length one). All that remains to complete the analysis

122 / Carl Pollard

of coordination is to add type-schematized conjunctions (e.g., andA and
orA) to the lexicon. What drives the analysis is the polymorphic typing
of these constants, which is not A⇒ (A ⇒ A) (as would be suggested
by the Steedman typing), but rather the type

GEN[A]+ ⇒ (GEN[A]⇒ GEN[A]).

The phonological interpretation functor will ensure that the nonempty
list argument shows up to the left of the conjunction and the other ar-
gument to the right. (Note that, in order for coordinate structures to
serve as arguments to other signs, we must systematically retype our
unsaturated lexical entries from A ⇒ B to GEN[A] ⇒ B, e.g. VP is
redefined from NP⇒ S to GEN[NP]⇒ S.)

References

Barr, M. and C. Wells. 1999. Category Theory for Computing Science 3rd
edition. Montreal: CRM.

Bayer, S. 1996. The coordination of unlike categories. Language 72(3):579–
616.

Bayer, S. and M. Johnson. 1995. Features and agreement. In Proceedings of
the 33rd Annual Meeting of the Association for Computational Linguistics,
vol. 33, pages 70–76. ACL.

Carpenter, B. 1998. Type-Logical Semantics. Cambridge, MA: MIT Press.

Carpenter, R. 1992. The Logic of Typed Feature Structures. New York:
Cambridge University Press.

Church, Alonzo. 1940. A formulation of the simple theory of types. Journal
of Symbolic Logic 5:56–68.

Curry, H. 1961. Some logical aspects of grammatical structure. pages 56–68.

Curry, H. and R. Feys. 1958. Combinatory Logic. Amsterdam: North-
Holland.

Dyla, S. 1984. Across-the-board dependencies and case in Polish. Linguistic
Inquiry 15(4):701–705.

Gallin, D. 1975. Intensional and Higher Order Modal Logic. Amsterdam:
North Holland.

Henkin, L. 1950. Completeness in the theory of types. Journal of Symbolic
Logic 15:81–91.

Heylen, D. 1996. On the proper use of booleans in categorial logic. In
Proceedings of the Conference on Formal Grammar 1996 . Prague.

Heylen, D. 1997. Generalization and coordination in categorial grammar.
In Proceedings of the Conference on Formal Grammar 1997 . Aix-en-
Provence.

Howard, W. 1980. The formulae-as-types notion of construction. pages 479–
490.

Kepser, S. 2001. On the complexity of RSRL. In Proceedings of FG-MOL
2001, Electronic Notes in Theoretical Computer Science 53 . Kluwer.

References / 123

Lambek, J. 1958. The mathematics of sentence structure. American Mathe-
matical Monthly 65:154–169.

Lambek, J. 1961. On the calculus of syntactic types. pages 166–178.

Lambek, J. 1988. Categorial and categorical grammars. In R. Oehrle,
E. Bach, and D. Wheeler, eds., Categorial Grammars and Natural Lan-
guage Structures, pages 297–317. Dordrecht: Reidel.

Lambek, J. 1999. Deductive systems and categories in linguistics. In H. J.
Ohlbach and U. Reyle, eds., Logic, Language, and Reasoning: Essays in
Honour of Dov Gabbay , pages 279–294. Dordrecht: Kluwer.

Lambek, J. and P. Scott. 1986. Introduction to Higher Order Categorical
Logic. Cambridge: Cambridge University Press.

Levine, R., T. Hukari, and M. Calcagno. 2001. Parasitic gaps in English:
some overlooked cases and their theoretical implications. pages 181–222.
Cambridge, MA: MIT Press.

Montague, R. 1974. The proper treatment of quantification in ordinary
English. In R. Thomason, ed., Formal Philosophy , pages 247–270. New
Haven, CT: Yale University Press.

Moortgat, G. 1997. Categorical type logics. In J. van Benthem and A. ter
Meulen, eds., Handbook of Logic and Language. New York: Elsevier.

Morrill, G. 1990. Grammar and logical types. In M. Stokhof and L. Toren-
vliet, eds., Proceedings of the Seventh Amsterdam Colloquium, pages 429–
450. Amsterdam: Institute for Logic, Language, and Information.

Morrill, G. 1994. Type Logical Grammar: Categorial Logic of Signs. Dor-
drecht: Kluwer.

Moshier, M.A. 1999. HPSG as type theory. In J. Ginzburg, L. Moss, and
M. de Rijke, eds., Logic, Language, and Computation, vol. 2. Stanford,
CA: CSLI.

Oehrle, R. 1994. Term-labelled categorial type systems. Linguistics and
Philosophy 17:633–678.

Penn, G. and K. Hoetmer. 2003. In search of epistemic primitives in the
English Resource Grammar (or Why HPSG can’t live without higher-order
datatypes). East Lansing.

Pollard, Carl. 2004. Higher-order categorical grammar. In Submitted for
Categorial Grammar 2004 .

Pollard, Carl. in preparation. Hyperintensions in higher-order categorical
logic Submitted for LoLa 2004.

Pollard, Carl and Jiri Hana. 2003. Ambiguity, neutrality, and coordination
in higher-order grammar. In Proceedings of Formal Grammar 2003 .

Pollard, C. and I. A. Sag. 1994. Head-Driven Phrase Structure Grammar .
University of Chicago Press, Chicago and CSLI, Stanford.

Pullum, G. and B. Scholz. 2001. On the distinction between model-theoretic
and generative-enumerative syntactic frameworks. In P. de Groote,
G. Morrill, and C. Retoré, eds., LACL 2001, LNAI 2099 , pages 17–43.
Berlin: Springer-Verlag.

124 / Carl Pollard

Pullum, G. and A. Zwicky. 1986. Phonological resolution of syntactic feature
conflict. Language 62(4):751–773.

Ranta, A. In press. Grammatical Framework: a type-theoretical grammar
formalism. Journal of Functional Programming .

Richter, F. 2000. A Mathematical Formalism for Linguistic Theories with
Application to Head-Driven Phrase Structure Grammar and a Fragment
of German.. Ph.D. thesis, University of Tübingen.

Richter, F. and M. Sailer. 2003. Basic concepts of lexical resource semantics.
Course materials.

Sag, I. 2003. Coordination and underspecification. In J.-B. Kim and S. Wech-
sler, eds., The Proceedings of the 9th International Conference on HPSG,
pages 267–291. Stanford: CSLI.

Sag, I., G. Gazdar, T. Wasow, and S. Weisler. 1985. Coordination and how to
distinguish categories. Natural Language and Linguistic Theory 3:117–171.

Wheeler, D. 1981. Aspects of a Categorial Theory of Phonology . Ph.D. thesis,
University of Massachusetts.

Whitman, P. 2002. Category Neutrality: A Type-Logical Investigation. Ph.D.
thesis, Department of Linguistics, The Ohio State University.

Zaenen, A. and L. Karttunen. 1984. Morphological non-distinctiveness and
coordination. In Proceedings of the First Eastern States Conference on
Linguistics, pages 309–320.

9

About Spilled Beans and Shot

Breezes: A New Word-level

Approach to Idioms1

Jan-Philipp Soehn

9.1 Motivation

Idioms are omnipresent in everyday language. Nonetheless, they have
been widely neglected by linguists developing grammar fragments. And
even where an account for idioms has been given, most approaches have
their shortcomings (cf. Riehemann, 2001, ch. 4).

In this contribution we want to focus on decomposable and non-
decomposable idioms2 and discuss technical aspects of an HPSG anal-
ysis. For reasons of space we will have to neglect detailed linguistic
corpus data. By “idiom” we mean idiomatic expressions that do not
form complete sentences as would be the case for e. g. His bark is
worse than his bite.

(33) make waves (“cause trouble”)

(34) spill the beans (“divulge a secret”)

The expressions in (33) and (34) are instances of decomposable idioms,
i. e. their meaning can be derived from the idiom parts. Note that idiom

1The research to the paper was funded by the Deutsche Forschungsgemeinschaft.
I am grateful to Stefan Müller, Christine Römer, Manfred Sailer, Adrian Simpson
and the reviewers of FGNancy for their comments and Michelle Wibraham for her
help with English. My email address: jp.soehn@uni-jena.de

2Cf. Nunberg et al. (1994), e. g., for this distinction.

125

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

126 / Jan-Philipp Soehn

parts are not necessarily to be understood literally. In (33), e. g., we
can attribute the meaning “cause” to make and “trouble” to waves.
The idiomatic meaning of the whole idiom consists of the idiomatic
meanings of its parts.

Where this is not the case, an idiom is non-decomposable: the mean-
ing of the whole phrase has nothing to do with the meaning of the words
the idiom consists of. Consider (35) and (36):

(35) saw logs (“snore”)

(36) shoot the breeze (“chat”)

It is not clear how to assign the meaning “snore” to the words saw and
logs, the same holds for “chat”.

After providing the prerequisites for a revised approach to idioms in
the next section, we analyse instances of these idiom classes and discuss
previous approaches. Then we briefly sketch how our proposal fits into
the overall architecture of HPSG and illustrate this by examining how
to merge it with a fronting analysis of German idioms.

9.2 Lexemes and Listemes

Before we present our analysis, we point out a way that enables us to
select a specific word. This forms a prerequisite of our approach.

Idioms often consist of particular words which cannot be substituted
by semantically equivalent terms. It seems in general that each word
has a unique “identity” with an idiosynchratic behavior. The possibility
to select a particular word would, thus, be a useful feature. Up to
now, there has been a discussion about the necessity of having such
kind of selection. One could argue that any data in question are to
be handled as Constructions or collocations. But why impose such a
“heavy thing” on an expression like to furrow one’s brow? Would it
not be plausible that the verb furrow simply selects a word of the form
brow? For perfect tense in German a main verb has to be combined with
the right auxiliary (haben/sein; in HPSG with the attribute auxf, cf.
Heinz and Matiasek, 1994, p. 222). Here one does nothing other than
to select a particular lexeme.

Krenn and Erbach (1994) made an important contribution to idiom
analysis within the HPSG framework. They suggested selecting particu-
lar lexemes via their feature lexeme below content index. This idea
of having lexeme information in the content is questionable. A lexeme
combines phonetic, morphological, syntactic and semantic properties all
together, not only semantic information. Besides, their approach had
several technical shortcomings (cf. Soehn and Sailer, 2003). We there-
fore propose that the lexeme approach has to be discarded.

About Spilled Beans and Shot Breezes / 127

A different concept that can help to distinguish between individual
words is that of a listeme3. As the concept holds the characteristic of
listedness in a lexicon, we use it in our grammar to identify a partic-
ular word or phrase. Thus, we insert listeme into the feature geom-
etry below category, emphasizing the morpho-syntactic character of
information. More precisely, we put it below head. This has two con-
sequences: firstly, it is available for selection, as a head value is below
synsem. Secondly, the listeme value of a projection is the same as
the one of the head, as all head features “percolate” according to the
Head-Feature-Principle. For our furrow-example that means that
a modified direct object his heavy brow still has the same listeme value
as brow alone.

A third question to address is the handling of pronominalization.
It is necessary that pronouns have the same listeme value as their
antecedent.4 In Krenn and Erbach’s approach this was the major mo-
tivation of putting the lexeme feature in the index. To emulate this
quality, we propose a constraint ensuring that each pronoun which is
co-indexed with an antecedent takes over its listeme value. In the lex-
ical entries of pronouns that value would be left underspecified in that
way, that it consists of a disjunction of an identifying value (she, her,
etc.) and a wildcard. In case of co-indexation the wildcard is identical
to the listeme value of the antecedent and – by virtue of the constraint
– becomes the actual and concrete listeme value of the pronoun. An
informal description of such a pronoun constraint is illustrated in (37).

(37) Pronoun-Listeme-Constraint:
If a pronoun is co-indexed with an antecedent, it takes over the
listeme value of that antecedent. Otherwise the listeme value
of this pronoun is that of the other disjunct.

The value of listeme is an atomic sort as brow, heavy, furrow, take, she
etc. In order to identify listemes for the same words having different
meanings, we use numeric indices just as in a dictionary.

In summary, discarding the lexeme approach, we propose a more
adequate solution for the problem of selecting particular words, at least
with respect to terminology, technical feasabiltiy and the feature geom-
etry. We introduce a feature listeme which is appropriate for the sort
head taking atomic sorts as its value.

3This term has been introduced by Di Sciullo and Williams (1988) for a sign
that is listed in the lexicon.

4E. g. in the phrase He furrowed it. the pronoun has the same listeme value as
its antecedent, satisfying the subcategorizational requirement of the verb.

128 / Jan-Philipp Soehn

complete-clause utterance

np vp pp

xp ...

�
barrier
loc-lic local �

FIGURE 1 Sort hierarchy for barrier

9.3 Licensing Contexts

Getting to the analysis, we have to define a second attribute in the
feature geometry. We declare objects of sort sign to bear a list-valued
feature coll (context of lexical licensing), first introduced by Richter
and Sailer (1999). The coll list may contain objects of sort barrier.
These barriers are particular nodes in the syntactic configuration, like
XPs, complete clauses or utterances (a complete clause with an illocu-
tionary force). The concept of barriers is borrowed from the tradition of
generative grammar, where these form boundaries for government and
binding principles. We avail ourselves of this concept and use similar
barriers for the restriction of distributional phenomena.

barrier objects have an attribute local-licenser (loc-lic) which
has a value of sort local. In the lexical entry of an idiomatic word one can
thus specify a barrier on its coll list with a specific local configuration.
Subsorts of barrier are illustrated in figure 1. The subsorts of barrier
correspond to nodes in the syntactic tree with particular properties.
The following relations identify the nodes which relate to the barriers
complete-clause and vp, respectively.5

∀ 1 ������ is complete-clause(1) ↔

1 ����� phrase
ss

�� status complete

loc cat � head verb

subcat elist 	�
�
 �
�������

∀ 1 ������ is vp(1) ↔

1 ����� phrase
ss

�� status incomplete

loc cat � head verb

subcat nelist 	
�
 �
�������

The Licensing-Principle (informally in 38) makes sure that
if there is a barrier specified on a word’s coll list, there is an actual
barrier in the phrase our word occurs in. This barrier must fulfill the
local requirements and it has to be minimal, i. e., there is no other
potential barrier of the same kind between the word and the actual

5Cf. (Richter, 1997, pp. 68f) for the status feature.

About Spilled Beans and Shot Breezes / 129

barrier.
(38) Licensing-Principle (LIP):

For each barrier object on the coll list of a sign x and for each
phrase z:

the local value of z is identical with the loc-lic value,
iff z dominates x, z can be identified as the barrier specified6 and
z dominates no sign y which in turn dominates x and forms an
equivalent barrier.

Hence, a word for which a barrier is defined cannot occur elsewhere; its
distribution is already specified in the lexical entry.

This concludes the description of technical requirements for our ap-
proach to idioms. Note that we have defined a very small number of
new sorts and attributes to be included in the signature. All idiosyn-
cratic information comes from the lexicon, as we will see in the next
section.

9.3.1 Decomposable Idioms

Let us show how a decomposable idiom can be analysed with our pro-
posal. Take for instance the idiom in (33) make waves7. We can assign
the meanings “cause” and “trouble” to make and waves and assume
that there are two lexical entries for the idiomatic usage of these words.8

The meaning of the whole idiom can be calculated in a regular compo-
sitional way.

The idiomatic make subcategorizes for a plural noun with the word
form wave (the idiomatic version) creating a VP with the meaning
“cause trouble”.�����

cat

����� head � listeme make3 �
subcat

�
NP,

���
loc

��
cat head � noun

listeme wave2 	
cont index num plural
�
 ���
 �
 �

wave2 for its part bears a non-empty coll list which looks as follows:�����
coll

� ����� vp
loc-lic

���
cat

���
head � verb

listeme make3 	
subcat � NP �
 �
 �
 � �
 �

The distribution of the idiomatic noun waves is restricted in that it
must be the complement of idiomatic make. The LIP makes sure that
the specified vp on the coll list is identical to the actual VP containing

7as in “Italian film makes waves” from
http://news.bbc.co.uk/1/hi/entertainment/film/3171907.stm (All weblinks were
found by Google on 01-27-2004)

8Another meaning of the idiom is “call attention” or “attract interest”.

130 / Jan-Philipp Soehn

make and waves. Defining the barrier as a VP correctly implies that
passivization of this idiom is not possible.9

Our example spill the beans10 can be analysed analogously. As we
assume regular syntactic composition to be in force, we predict that
different specifiers (some beans) or modifications (as some very com-
promising beans) are grammatical.

A special case of the idiom not occurring in its canonical form is
that of pronominal reference. In fact, pronominalization is quite hard
to handle in idiom analysis. Cf. the following example:

(39) Eventually she spilled all the beans. But it took her a few days to
spill them all.11

Here the pronoun them refers back to the idiomatic beans. As described
in section 2 a pronoun has the same listeme value as its antecendent,
so them gets its correct meaning. This being the case, the subcatego-
rization requirements of idiomatic spill in both clauses are satisfied.
The antecendent of them in turn is licensed by its own coll value
stating that the idiomatic beans can only occur together with the verb
spill in its idiomatic use. The barrier is a complete-clause which allows
e. g. passive or relative constructions. Thus, our proposal can handle
pronominalization data, too.

9.3.2 Non-decomposable Idioms

For idioms that have a non-decomposable meaning we define phrasal
lexical entries (PLE), according to Sailer (2003) and following the idea
of Gazdar et al. (1985). PLEs are lexical entries for syntactically com-
plex expressions. Thus, they have properties of both words and phrases.
As words, they are licensed by their lexical entry. As phrases, lexical
rules cannot apply to them and syntactic operations like topicaliza-
tion can be excluded by defining structural requirements in their dtrs
attribute.

The semantics of a non-decomposable idiom is defined in its PLE.
The parts of such an idiom are licensed by their ordinary lexical entries.
In the syntactic structure of a sentence containing such an idiom there
is a node where all necessary idiom parts are present. This node is
either licensed by regular compositional principles or by a PLE. If a

9Riehemann found 5 examples out of 243 (2%) where the idiom parts do not occur
within the same VP. If one wants to account for those (including passivization and
a relative clause) the barrier is simply to be set accordingly.

10as in “Tom Cruise has spilled the beans on Nicole Kidman’s relationship with
US musician Lenny Kravitz.” from
http://www.smh.com.au/articles/2003/11/29/1070081589377.html?from=storyrhs

11Riehemann (2001), p. 207

About Spilled Beans and Shot Breezes / 131

PLE is applied, it replaces the semantics computed so far with its own
meaning.

According to standard HPSG assumptions we adopt Immediate
Dominance Schemas that license ordinary phrasal signs. In order to
exclude the application of ID-Schemas to a phrase licensed by a PLE
we can redefine the ID-Principle in the following way:�

phrase
coll e-list � → � Head-Complement-Schema ∨ Head-Adjunct-Schema ∨

Head-Marker-Schema ∨ Head-Filler-Schema �
Accordingly, we have to change all principles of grammar that are

concerned with regular combination of signs (like the Head-Feature-
Principle or the Semantics-Principle) in such a way that they
only apply to phrases bearing an empty coll list. This can simply be
done by adding a line in the antecedent (remember that the principles
consist of an implication) stating [coll e-list].

In order to specify which lexical entries must have an empty coll
list, we introduce subsorts of listeme, namely the sorts coll listeme and
no coll listeme, and make the following constraint:�

sign
ss loc cat head listeme no coll listeme � → � coll elist �

Note that all lexical entries have different values of listeme and, con-
versely, the set of all listeme values covers the entirety of lexical en-
tries.

We have now made a distinction between regular phrasal signs which
have an empty coll list and non-regular or idiomatic phrases having a
non-empty coll list.12 Thus, in a PLE of an idiom like (35) saw logs13

we define its coll list as non-empty. Besides, this idiom cannot be
passivized without losing its idiomatic reading. Passivization is already
excluded by the nature of the PLE itself: an object in accusative case
is required and thus, logs can never occur as the subject.

12The distribution of coll values could be easily constrained by another principle
which we omit here for reasons of space.

13as in “Two young boys stand by their mother’s bed while she saws logs in her
sleep.” from http://www.collegestories.com/filmfrat/igby goes down.html

132 / Jan-Philipp Soehn��������������������������������������

phrase

phon 3 ⊕ 4

ss loc

�����
cat

���
head � verb

listeme saw-logs 	
subcat � 2 �
 �

cont relation snore

 �
dtrs

���������������������

head-comp-struc

h-dtr

������� word

phon 3 � saw �
ss loc

���
cat

���
head � verb

listeme saw 	
subcat � 2 NP, 5 �
 �
 �
 �

n-dtr

������� phon 4 � logs �
ss 5 loc

�����
cat

��
head � case acc

listeme log 	
subcat 〈〉
�

cont index num plural

 �
 �

 �
coll ne-list

 �
In defining a non-empty coll value, we provide a unified way to treat
decomposable and non-decomposable idioms, marking their quality of
being idiomatic. Parts of decomposable idioms bear a non-empty coll
list, which restricts their occurrence to certain contexts. Nondecom-
posable idioms also have a non-empty coll list, exempting them from
regular syntactic and semantic principles.

In addition, the occurrence of nondecomposable idioms can be re-
stricted to certain contexts via the same feature. This is important for
idiomatic intensifiers, among others, like as a sandboy in to be happy
as a sandboy or as a kite in to be high as a kite.

9.4 How does it fit in?

As we have introduced a (rather manageable) number of new sorts,
principles and features, and explained how to adapt existing grammar
principles to our approach, it is not difficult to imagine how our pro-
posal fits into the overall HPSG Grammar. Non-idiomatic signs bear an
empty coll list and thus are exempt from any consequence of our anal-
ysis. In addition, the fact that each word has now a value of its listeme
feature is only important where an access to listeme is needed. At the
same time our proposal can be combined smoothly with other modules
of grammar concerning idioms.

In order not to settle for this mere claim, we will illustrate it by
means of an idiom-independent part of grammar – topicalization and
verb movement, for instance.

In a declarative sentence in German the finite verb occupies the
second position. Such sentences can be derived from verb-last-clauses
by movement of the verb. The position in front of the verb is called

About Spilled Beans and Shot Breezes / 133

Vorfeld and can contain an argument or an adjunct. The positioning of
an element in the Vorfeld is usually analyzed as a nonlocal dependency,
which accounts for the vast majority of declarative clauses. A verb
movement analysis by Borsley and Kiss, which is discussed in Müller
(2004), can account for this phenomenon.

First, a special lexical entry for a verbal trace (40) is introduced,
where verbal movement is treated as a local phenomenon. Thus, for
a verbal trace there is no application of the standard unbounded de-
pendency analysis (cf. Pollard and Sag (1994)). The local-valued fea-
ture dsl allows the valence structure of the moved verb to be avail-
able along the head projection line. The lexical entry of the verbal
trace (slightly adapted from Müller, 2004, p. 22) looks as follows:

(40)

��������������
phon 〈〉

ss loc

����������� cat

��������� head

������� verblisteme 3

dsl

��
cat � head listeme 3

subcat 1 	
cont 2
�
 �

subcat 1

 �
cont 2

 �

 �

Secondly, Müller outlines a lexical rule (41) for a special version of
the finite verb which is moved. The verb being licensed by this rule
takes the projection of the verbal trace as its argument. A phrase is
only grammatical if the valence properties of the verb are identical to
those of the verbal trace. The rule takes a verb in non-initial position
as input and outputs a verb in initial position (marked by the verb fea-
ture initial). The lexical rule for initial verb position (V1-LR, slightly
adapted from Müller, 2004, p. 23) is defined in the following way:

(41)

������ word

phon 1

ss loc 2

��
cat head

��
vform fin

listeme 3

initial –
�
�
 � 7→��������������
word

phon 1

ss loc cat

��������� head

��
vform fin

listeme 3

initial +
�
subcat

� ���
loc cat

��
head � verb

dsl 2 	
subcat 〈〉
�
 � �

 �

 �

To illustrate this analysis together with our approach, we take the
German idiom jemandem den Garaus machen (to cook so.’s goose, ’to
kill someone’). We can roughly state its decomposable meaning as “to

134 / Jan-Philipp Soehn

put an end to”.

(42) Zucker,
sugar

Salz,
salt

chemische
chemical

Aromen
flavors

und
and

Geschmacksverstrker
flavor enhancers

machen
make

dem
the

natrlichen
natural

Geschmacksempfinden
taste

den
the

Garaus.
end

‘Sugar, salt, chemical flavorings and flavor enhancers destroy our
natural taste.’14

(43) Den
the

Garaus
end

macht
makes

den
the

Seglern
sailors

die
the

Langleinenfischerei.
long line fishing

‘Long line fishing encroaches upon sailors.’15

The sentence in (42) shows that the NP can appear detached from
the verb. In (43) the NP is fronted and has been extracted from the
original VP. The structure of (43) is the following:

(44) [Den Garaus]i machtj den Seglern die Langleinenfischerei i j .

We can analyse this sentence by means of the standard unbounded
dependency analysis, the approach in Müller (2004) and our proposal.
Figure 2 shows the syntax tree of (44) including all relevant information.

Let us begin to explain this figure with the extraction trace. The un-
bounded dependency analysis involves a lexical entry for a trace where
the local value (1) of the extracted element is identical to an element
in the inher slash list. The Nonlocal-Feature-Principle guar-
antees that this value “percolates” up the tree. By the Head-Filler-
Schema this slash value is bound via to-bind slash because the
local value of the filler is the same as the slash value.

Further, the verbal trace attracts the arguments of the moved verb
and puts it onto both its subcat list and its dsl cat subcat list.
The Head-Feature-Principle enforces the presence of the dsl value
along the head projection line. The verb machen for its part is input to
the V1-LR (41). The output subcategorizes for a sign (6) whose dsl
value is identical to the local value of the input (7).

This concludes the pure fronting analysis. So far as our proposal is
concerned, the important parts are the values of coll and listeme
respectively.

The filler den Garaus has a coll value defining a barrier16 bearing

14http://www.erichlutz.de/publikationen/globus.html
15Salzburger Nachrichten, 15.11.2000; Found with COSMAS II by IDS Mannheim
16We do not specify the barrier to be a VP deliberately. If den Garaus occurs in

situ, a vp would be correct, but in this case we have a complete-clause (if not even
an utterance) as barrier. In order to not exclude such fronting cases, the barrier has

About Spilled Beans and Shot Breezes / 135

���������ss
l
c

1
c
t

� h
d

� n
o
u
n

c
a
se

a
c
c

��

c
o
l
l

�
� c

o
m

p
le

te
-c

la
u
s
e

l
o
c
-l

ic

	 c
t

h
d

l
st

m
m

a
c
h
e
n
3

�
�������

D
e
n

G
a
r
a
u
s

�����l
c

c
t

�����h
d

� v
f
o
r
m

fi
n

in
it

ia
l

+

�

sc

� 6

�

����
����

↑
V

1
-L

R

⊥

7

���������c
t

���������h
d

���v
f
o
r
m

fi
n

l
st

m
m

a
c
h
e
n
3

in
it

ia
l

-

���

sc
2

������
������

m
a
c
h
t

4
N

P
[d

a
t
]

d
e
n

S
e
g
le

r
n

3
N

P
[n

o
m

]
d
ie

L
a
n
g
le

in
e
n
-

fi
s
c
h
e
r
e
i

5

���l
c

1
c
t

h
d

n
o
u
n

n
l
c

in
h

sl

�

1

�

���

�������l
c

c
t

�������h
d

� v
f
o
r
m

fi
n

d
sl

7
c
t
s
c

2

�

sc
2

�

3
,
4

,
5

�

�����
�����

c
o
m
p

h
e
a
d

�������������l
c

c
t

�������h
d

� v
f
o
r
m

fi
n

d
sl

7

�

sc

�

3
,
4

�

�����

n
l
c

in
h

sl

�

1

�

��������

c
o
m
p

h
e
a
d

�������������l
c

c
t

�������h
d

� v
f
o
r
m

fi
n

d
sl

7

�

sc

� 4

�

�����

n
l
c

in
h

sl

�

1

�

��������

c
o
m
p

h
e
a
d

6
�����������l

c
c
t

�����h
d

� v
f
o
r
m

fi
n

d
sl

7

�

sc
〈
〉

����

n
l
c

in
h

sl

�

1

�

�������

h
e
a
d

c
o
m
p

���������������l
c

c
t

���h
d

� v
f
o
r
m

fi
n

l
st

m
m

a
c
h
e
n
3

�

sc
〈
〉

���

n
l
c

���in
h

sl

�

1

�

t
b

sl

�

1

����

���������

f
il

l
e
r

h
e
a
d

�����������l
c

c
t

���h
d

� v
f
o
r
m

fi
n

l
st

m
m

a
c
h
e
n
3

�

sc
〈
〉

���

n
l
c

� in
h

sl
〈
〉

t
b

sl
〈
〉

�

�������

FIGURE 2 Analysis of Den Garaus macht den Seglern die
Langleinenfischerei

136 / Jan-Philipp Soehn

the listeme value machen3. In the structure we have a node (S), which
is the minimal barrier above the filler and whose head is exactly of the
required listeme value. Thus, our Licensing-Principle is satisfied.

By the sort machen3 we refer to an idiomatic verb machen with the
meaning “to put”. This verb subcategorizes for an NP (with synsem
value 5) bearing the listeme value garaus (not depicted in figure 2). As
a local value includes listeme, and the local values of the filler and
the gap are identical, the subcategorization requirements of machen3

are satisfied, even though Garaus has been extracted. Note that by the
identity of the local value 7 and the dsl value of 6 , the verbal trace
has the correct listeme value.

9.5 Alternative Analyses

9.5.1 A Different coll Mechanism

The analysis we suggest here is an enhancement of a proposal by
Richter and Sailer (1999). However, in Sailer (2003) the author de-
scribed a variant of the coll mechanism: In this thesis, the value of
coll is a singleton list that may contain a sign. That sign is the overall
expression in which the idiomatic word occurs. Take for example the
idiom spill the beans: in the lexical entry of the idiomatic word beans its
coll value is specified as a sign containing the semantic contributions
of a definite article, the idiomatic word spill and beans itself in the right
scopal relations. Sailer defines the so-called Coll-Principle ensuring
that the sign specified in a coll list dominates the sign bearing that
list. As a consequence, information of the overall utterance is available
at lexical level and, conversely, local information is available on each
node in the structure.

Thus, even though Sailer introduces only one new attribute, this
approach is very unrestrictive and if one taps its full potential, nearly
all grammatical phenomena can be described, even if they have nothing
to do with collocations. Selection, e. g., would only be a special case of
a collocation. Because of this power and unrestrictedness, that version
of coll is to be met with criticism.

9.5.2 A Constructional Approach

Riehemann (2001) makes another concrete proposal for the analysis
of idioms. She adopts many ideas of Construction Grammar and
carries them forward to the HPSG framework. Her approach re-

thus, on the one hand, to be general enough. On the other hand, we can exclude
ungrammatical cases of extraction beyond clausal boundaries.

About Spilled Beans and Shot Breezes / 137

quires a complex machinery of new sorts and attributes to cover
not only the amount of existing idioms but also their occurrences
in different syntactic configurations. She has to assume, e. g., distinct
subsorts of a spill beans idiom phrase for the idiom occurring in a
head-subject-phrase (Dana spilled the beans.), in a head-filler-structure
(Who did Kim claim spilled the beans?) or in a head-specifier-structure
(the beans that Dana spilled). Even if the existence of sorts for different
constructions is well established in Construction Grammar, it is ques-
tionable to assume different subclasses of linguistic signs, only because
they contain idiomatic items in different syntactic structures. In other
words, why assume different sorts for one single idiom only because it
occurs in different constructions?

Moreover, Riehemann herself has to admit that her approach can-
not handle cases of pronominal reference like (39), because idiomatic
spill is not licensed as it seems to appear by itself and not within a
spill beans idiom phrase.

In summary, it seems to us that a lexical approach is to be preferred
over a structural one. Nevertheless, her arguments in favor of a con-
structional analysis of non-decomposable idioms are convincing. Our
counterpart to that are phrasal lexical entries which we assume for this
kind of idiomatic expressions.

9.6 A Modular Approach: Prospects

We have proposed one way of analyzing idioms and similar lexical id-
iosyncrasies. It can handle distributional characteristics of idiomatic
words and even difficult cases like pronominalization. We have demon-
strated by means of topicalization and verb movement that our proposal
merges smoothly with other modules of grammar.

We decided to take a word-level collocation-based account using the
coll feature. This approach is modular in two ways. Firstly, the barri-
ers can be adjusted “vertically” according to the range (XP, complete
clause or utterance) needed for a particular idiomatic expression. Sec-
ondly, by the loc-lic feature we can specify any characteristics within
the local information. We could now go on and define other attributes
of barrier like phon-lic to define any requirements of the phonetic
string of that barrier. In that way our approach is also horizontally
modular.

138 / Jan-Philipp Soehn

An application of such a phon-lic feature would be the modelling
of occurrence restrictions of the English indefinite article an. This phe-
nomenon together with other cases of sandhi is discussed by Asudeh
and Klein (2002). With our approach, we define the lexical entry of an
as follows: the phon-lic value of the barrier np on the coll list is the
phonetic string

�
an � + a phonetically realized vowel.

Thus, with a quite general approach to idioms using the coll fea-
ture, we can handle very particular phenomena, too. We leave it to
further research to explore the possiblities that our approach offers.

References

Asudeh, Ash and Ewan Klein. 2002. Shape Conditions and Phonological
Context. In F. van Eynde, L. Hellan, and D. Beermann, eds., Proceedings of
the 8th International HPSG Conference, pages 20–30. CSLI Publications.
http://cslipublications.stanford.edu/HPSG/2/.

Di Sciullo, Anna-Maria and Edwin Williams. 1988. On the Definition of
Word . Linguistic Inquiry Monographs. MIT Press, Cambridge, Mass, 2nd
edn.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Gener-
alized Phrase Structure Grammar . Cambridge, Mass.: Harvard University
Press.

Heinz, W. and J. Matiasek. 1994. Argument Structure and Case Assignment
in German. In J. Nerbonne, K. Netter, and C. Pollard, eds., German in
Head-Driven Phrase Structure Grammar , pages 199–236. CSLI Publica-
tions. Lecture Notes 46.

Krenn, Brigitte and Gregor Erbach. 1994. Idioms and Support Verb Con-
structions. In J. Nerbonne, K. Netter, and C. Pollard, eds., German in
Head-Driven Phrase Structure Grammar , pages 365–396. CSLI Publica-
tions. Lecture Notes 46.

Müller, Stefan. 2004. Zur Analyse der scheinbar mehrfachen Vorfeldbe-
setzung. To appear in Linguistische Berichte URL: http://www.cl.uni-
bremen.de/∼stefan/Pub/mehr-vf-lb.html; 16.01.2004.

Nunberg, Geoffrey, Ivan A. Sag, and Thomas Wasow. 1994. Idioms. Language
70:491–538.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Gram-
mar . Standford University: CSLI/The University of Chicago Press.

Richter, Frank. 1997. Die Satzstruktur des Deutschen und die Behandlung
langer Abhängigkeiten in einer Linearisierungsgrammatik. Formale Grund-
lagen und Implementierung in einem HPSG-Fragment. In E. Hinrichs,
D. Meurers, F. Richter, M. Sailer, and H. Winhart, eds., Ein HPSG-
Fragment des Deutschen, Teil 1: Theorie, no. 95 in Arbeitspapiere des
SFB 340, pages 13–187. Universität Tübingen.

References / 139

Richter, Frank and Manfred Sailer. 1999. LF conditions on expressions of
Ty2: An HPSG analysis of negative concord in Polish. In R. D. Bors-
ley and A. Przepiórkowski, eds., Slavic in Head-Driven Phrase Structure
Grammar , pages 247–282. Stanford: CSLI Publications.

Riehemann, Susanne Z. 2001. A Constructional Approach to Idioms and
Word Formation. Ph.D. thesis, Stanford University, Stanford, CA.

Sailer, Manfred. 2003. Combinatorial Semantics and Idiomatic Expressions
in Head-Driven Phrase Structure Grammar. Phil. Dissertation (2000).
Arbeitspapiere des SFB 340. 161, Eberhard-Karls-Universität Tübingen.

Soehn, Jan-Philipp and Manfred Sailer. 2003. At first blush on tenter-
hooks. about selectional restrictions imposed by nonheads. In G. Jäger,
P. Monachesi, G. Penn, and S. Wintner, eds., Proceedings of Formal Gram-
mar 2003 , pages 149–161.

Proceedings of Formal Grammar 2004
Gerhard Jäger, Paola Monachesi, Gerald Penn and Shuly Wintner (eds.).
Copyright © 2004, the individual authors

141

10

Resumption in Persian Relative
Clauses: An HPSG Analysis
MEHRAN TAGHVAIPOUR

10.1. Introduction
Persian is a null-subject verb final language with SOV word order that

allows personal pronouns to be used resumptively in relative clause (RC)
constructions. RCs in Persian are head-modifying constituents, all typically
introduced by the invariant complementizer ke. Persian RCs are Unbounded
Dependency Constructions (UDCs), containing either a gap or a resumptive
pronoun (RP). The gap or the RP is linked to and licensed by the NP
modified by the RC. In some positions only gaps are allowed, and in other
positions only RPs. There are also some positions where both gaps and RPs
are alternatively allowed. Illustrating the striking similarities between
Persian gaps and RPs, I will provide an HPSG unified approach to take care
of the long distance dependency between the licensing structure and the gap
or the RP in Persian restrictive RCs with a truly single feature-based
mechanism, using only the SLASH feature.

10.2 The Data
Example (1) shows a Persian sentence containing a RC. The RC is put in
brackets.

142 / MEHRAN TAGHVAIPOUR

(1)
mærd-i1 [ke piræn-e zærd pu_ideh] Dr. Bayat-eh
man-RES COMP shirt-EZ yellow wear-PP-3sg Dr. Bayat is
‘The man who is wearing a yellow shirt is Dr. Bayat.’

Example (2a) shows another Persian RC in which the gap is shown by ___.
Example (2b) represents the same RC with a resumptive pronoun. The
pronoun u, i.e. ‘he’, is used resumptively in (2b). Example (2c) shows the
cliticized form of the pronoun ‘u’.

(2a)
mærd-i [ke _oma ____ diruz molaqat kærdid]…
man-RES COMP you Ø yesterday meet-PAST-2pl …
‘The man whom you met yesterday…’

(2b)

mærd-i [ke _oma u ra2 diruz molaqat kærdid]…
man-RES COMP you he RA yesterday meet-PAST-2pl …
‘The man whom you met (*him) yesterday…’

(2c)
mærd-i [ke _oma diruz molaqat-æ_ kærdid …]
man-RES COMP you yesterday meet-him do-PAST-2pl…
‘The man whom you met (*him) yesterday…’

It is not always possible to replace a gap with a RP. For instance, if we
replace the gap in (1) above with a RP, the result will be example (3), which
is ungrammatical.

(3)
mærd-i [ke u piræn-e zærd pu_ideh] Dr. Bayat-eh
man-RES COMP he shirt-EZ yellow wear-PP-3sg Dr. Bayat is
‘The man who (*he) is wearing a yellow shirt is Dr. Bayat.’

The pattern of distribution of RPs and gaps in Persian RCs depends on two
factors. The first factor is their position inside the RC and the second factor
is whether the RC is restrictive or nonrestrictive.

1 Particle -i (-RES in gloss) is a suffix that attaches to the nouns modified by restrictive RCs.
2 This particle (whose colloquial form is ro) is a specificity marker in Persian and is

shown, henceforth, by RA in gloss.

RESUMPTION IN PERSIAN RELATIVE CLAUSES: AN HPSG ANALYSIS / 143

Subject Object of
Prep.

Genitive Direct
Object

Gap is
allowed?

Yes No No Yes

RP is
Allowed?

No Yes Yes Yes

Table 1: Distribution of Gaps or Resumptive Pronouns in Persian restrictive RCs

Table 1 above shows the pattern of distribution of RPs and gaps in
restrictive RCs in Persian. Table 2 below shows this pattern in
nonrestrictive RCs in this language. A comparison between the two tables
shows that it is not possible to use gaps or RPs alternatively in direct object
positions in nonrestrictive RCs in Persian.

Subject Object of
Prep.

Genitive Direct
Object

Gap is
allowed?

Yes No No No

RP is
Allowed?

No Yes Yes Yes

Table 2: Distribution of Gaps or Resumptive Pronouns in Persian restrictive RCs

While examples like (2) above showed the possibility of alternative options
in restrictive RCs when the relativized position is direct object, examples
like (4) below show lack of this possibility in non-restrictive RCs in this
language. In non-restrictive RCs, RPs are obligatory if the the relativized
position is direct object.

(4a)
Omid, ke shoma u ra molaqat+kærdid, daee-ye mæn æst.
Omid, COMP you he RA meet-PAST-2pl, uncle-EZ I is
‘Omid, who(m) you met (*him) yesterday, is my uncle.’

(4b)
*Omid, ke shoma ____ molaqat+kærdid, daee-ye mæn æst.
Omid, COMP you ____ meet-PAST-2pl, uncle-EZ I is
‘Omid, who(m) you met____ yesterday, is my uncle.’

Persian Gaps and RPs show striking similarities. I will provide a variety of
evidence in favour of this similarity to conclude that Persian RCs contain
traces, rather than null constituent gaps.

A strong argument in support of the fundamental similarity of RPs and gaps
are comes from coordinate structures. Example (5) shows that in Persian a
RP can be used with a gap in coordinate structures in unbounded

144 / MEHRAN TAGHVAIPOUR

dependencies. In fact, it is possible to have gaps in both conjuncts, RPs in
both, or a gap in one conjunct and a RP in the other (in any order).

(5)
mærd-i ke ____ pirahæn-e zærd pu_ideh+bud væ
man-RES COMP Ø shirt-EZ yellow wear-PRESPART-3sg and

shoma diruz az u pul qærz+gereftid Ali bud.
you yesterday from him money borrow-PAST-2pl Ali was

‘The man who___ was wearing a yellow shirt and you borrowed money
from (*him) was Ali.’

The second argument that supports the similarity between Persian RPs and
gaps comes from parasitic gaps. Persian data shows that RPs, like gaps, can
license parasitic gaps. I will bring examples (6a) and (6b) to illustrate this
possibility. In (6a) there are two gaps, the second of which is parasitic. (6b)
shows a sentence in which the second gap is still parasitic but licensed by
the RP un.

(6a)
in ketab-i-ye ke Yasmin bedun in
this book-RES-is COMP Yasmin without this

ke ___ bexuneh ___ xærid.
COMP Ø read-3sg Ø bought-3sg.

‘This is the book that Yasmin bought ___ without reading ___’

(6b)
in ketab-i-ye ke Yasmin bedun in
this book-RES-is COMP Yasmin without this

ke un ro bexuneh ___ xærid .
COMP it RA read-3sg Ø bought-3sg.

‘This is the book that Yasmin bought (*it) without reading ___’

RESUMPTION IN PERSIAN RELATIVE CLAUSES: AN HPSG ANALYSIS / 145

Another piece of supporting evidence for the similarity of Persian gaps and
RPs is the sensitivity of RPs, like gaps, to certain islands. This is unlike
what we see in Hebrew, for instance (see Vaillette (2001)). As an example,
Persian gaps are sensitive to Subject Condition as shown in (7).

(7a)
[in ede’a ke Ali Hæmid ra dideh]
this claim COMP Ali Hamid RA seen

Yasmin ra narahat+kærd.
Yasmin RA annoyed

‘The claim that Ali has seen Hamid annoyed Yasmin.’

(7b)
*mærd-i ra ke [in ede’a ke Ali___/ u ra dideh]
man-RES RA COMP [this claim COMP Ali___/ him RA seen]

Yasmin ra narahat+kærd.
Yasmin RA annoyed.

‘The man that the claim that Ali has seen ___ /him annoyed Yasmin.’

Thus, Persian gaps and RPs are strikingly similar: they have the same status
within conjuncts, they can both license parasitic gaps; and, they are both
sensitive to some island constraints. Based on this similarity, I will propose
that they are both signs associated with the SLASH feature.

10.3 An HPSG Analysis

10.3.1 Bottom
I will assume that the unbounded dependency in Persian RCs appear at

the bottom of the dependency by a special sign that has a nonempty value
for the SLASH feature. This special sign is either a trace or a RP. The
nonempty SLASH feature encodes the information that there is a
dependency between the trace/RP and the NP modified by the RC.

I will propose the lexical entry in (8) for RPs and the one in (9) for
traces. The lexical entries in (8) and (9) are the same except in two respects.
Firstly, the value of the PHON feature in traces is an empty set. This means
that RPs as overt elements have phonology but traces do not. The second

146 / MEHRAN TAGHVAIPOUR

difference between these two lexical entries is that the value of their
GAPTYPE features is different.

(8) Lexical Entry for a resumptive pronoun

 PHON phon-form
 synsem

 loc
 HEAD noun

 SUBJ < >
 SYNSEM LOC 1 CAT VAL COMPS < >

 SPR < >

 ppro
 CONT PER < >

 INDEX NUM < >
 GEN < >

 RESTR { }

 SLASH { 1 }
 NONLOC
 GAPTYPE rp

RESUMPTION IN PERSIAN RELATIVE CLAUSES: AN HPSG ANALYSIS / 147

(7) Lexical Entry for a trace

 PHON {}
 synsem

 loc
 HEAD noun

 SUBJ < >
 SYNSEM LOC 1 CAT VAL COMPS < >

 SPR < >

 ppro
 CONT PER < >

 INDEX NUM < >
 GEN < >

 RESTR { }

 SLASH { 1 }
 NONLOC
 GAPTYPE trace

GAPTYPE is a feature that I have introduced in order to capture the
distributional properties of RPs and traces. GAPTYPE is a non-local feature
whose value can be either trace or rp, for traces and RPs, respectively. The
reason for distinguishing traces and RPs with a NONLOCAL feature is that
this is not reflected within the value of SLASH and hence it is possible for a
single unbounded dependency to be associated with a trace and an RP.

As for the pattern of distribution of RPs and traces, I will, first prevent
RPs from appearing in subject position. I will propose the constraint in (10)
to deal with this.

(10)
[SUBJ < [1] >] ‡ ~ ([1] = [SYNSEM|NONLOC|GAPTYPE rp])

The effect of this constraint is that if an element is in subject position,
then the value of its GAPTYPE feature cannot be rp. In other words, if an
element is a RP whose value of the GAPTYPE feature is rp, then it cannot
come in subject position.

148 / MEHRAN TAGHVAIPOUR

The second constraint, I will propose here, is to prevent traces from
appearing in the positions of object of prepositions and possessors (i.e., in
positions of the complements of non-verbs). This constraint is proposed in
(11) below.

(11)

 HEAD [1]
 ‡ [1] = verb

 COMPS <…, [GAPTYPE trace], …>

The effect of (11) is that if there is a trace as a complement of a head,
then that head has to be a verb. Therefore, as in the case of object of
preposition and genitive cases (possessors), the head is not a verb, we will
not have a trace therein.

10.3.2 Middle
In the middle of the dependency, I will follow Sag (1997). The SLASH is
inherited by two constraints: Lexical Amalgamation of SLASH, and
SLASH Inheritance Principle, given in (12) and (13) below.

(12) Lexical Amalgamation of SLASH

 BIND 0
word ==> ARG-ST <[SLASH 1], …,[SLASH n]>
 SLASH (1 + … + n) - 0

According to (12), all words, except SLASH binding elements like tough,
specify empty value for the feature BIND. That is, in most cases nothing is
subtracted from the disjoint union of the argument’s SLASH values.
Therefore, if a non-head-daughter is slashed so should the head daughter.

(13) SLASH Inheritance Principle (SLIP):

 SLASH / 1
hd-nexus-ph ==>

 HD-DTR / [SLASH 1]

RESUMPTION IN PERSIAN RELATIVE CLAUSES: AN HPSG ANALYSIS / 149

The constraint in (13) guarantees that the SLASH value of a phrase (of the
type head-nexus-phrase) is the SLASH value of its head-daughter. In this
way, any SLASH inheritance is mediated by the head-daughter, whose
SLASH value contains that of the relevant non-head daughter.

10.3.3 Top
At the top of the dependency, I will need some way to bind the SLASH

feature. In other words, I will need a way to ensure that the non-empty
SLASH value stops at an appropriate point. This appropriate point, in
Persian RCs, is the complementizer ke. I will propose the lexical entry in
(14) for ke in RCs (i.e., keRC).

(14) Lexical Entry for keRC

word

 PHON ke

 synsem

 loc comp INDEX 1
HEAD MOD N’

 RESTR 3

SUBJ < >
SYNSEM LOC CAT VAL SPR < >

COMPS A : 2

INDEX 1
CONT

 RESTR 2 » 3

 ARG-ST A S[fin, (SLASH { 4 NP 1 })]
 BIND { 4 }

150 / MEHRAN TAGHVAIPOUR

The lexical entry for ke specifies some lexical information that ensures
that the index of the N’ (the NP modified by the RC) is identical to the
SLASH value of ke. This structure-sharing, which is shown by tag 1, relates
the trace or the RP to the NP modified by the RC. In addition, (12) also
ensures that ke requires a sentential complement, shown by tag A . Tag A
is the only member of ke’s ARG-ST list that stands for a finite sentence,
containing a trace or a RP. The lexical binding of SLASH is accounted for
by the feature BIND, which has a non-empty set as value for ke. This is
shown by tag 4 . The BIND feature will ensure that the trace or the RP is
not amalgamated into the SLASH value of ke itself.

10.4 The Open Issue
In Section 1, I noted that the pattern of distribution of resumptive pronouns
in non-restrictive relative clauses is different. That is, while the resumptive
pronoun or gap can be used alternatively in restrictive RCs (as shown in (2)
above), the two cannot substitute one another in non-restrictive counterparts
(as shown in (4) above).

My account for RPs at its present state cannot provide any analysis for non-
restrictive clauses.

References
Pollard C., and I. Sag, 1994. Head-Driven Phrase Structure Grammar. The

University of Chicago Press, USA.
Sag, I., 1997. English Relative Clause Constructions. Journal of Linguistics

33:431-484.
Vaillette, N. 2001. Hebrew Relative Clauses in HPSG. Proceedings of the

7th International Conference on Head-Driven Phrase Structure
Grammar, CSLI Publications.

11

A Hierarchy of Mildly

Context-Sensitive Dependency

Grammars
Anssi Yli-Jyrä and Matti Nykänen

Dept. of General Linguistics and Dept. of Computer Science,
University of Helsinki, Finland
Email: Anssi.Yli-Jyra@ling.helsinki.fi, Matti.Nykanen@cs.helsinki.fi

ABSTRACT. The paper presents Colored Multiplanar Link Grammars (CMLG).
These grammars are reducible to extended right-linear S-grammars (Wartena
2001) where the storage type S is a concatenation of c pushdowns. The number of
colors available in these grammars induces a hierarchy of Classes of CMLGs. By
fixing also another parameter in CMLGs, namely the bound t for non-projectivity

depth, we get c-Colored t-Non-projective Dependency Grammars (CNDG) that
generate acyclic dependency graphs. Thus, CNDGs form a two-dimensional hier-
archy of dependency grammars. A part of this hierarchy is mildly context-sensitive
and non-projective.

11.1 Introduction

This paper proposes non-projective, polynomially parseable lexicalized
grammars capable of describing scrambling and long-distance depen-
dencies up to a bounded nested crossing depth and a bounded non-
projectivity depth.

In terms of dependency grammar (DG) (Tesnière 1959), word-order
is distinct from the dependency tree that analyzes the structure of the
sentence. However, Hays (1964) and Gaifman (1965) have formalized
Tesnière’s ideas so that their DGs describe only projective linearisa-
tions.

What we would like to have is a mildly context-sensitive (MCS)
(Joshi 1985) superclass of the Hays-Gaifman DGs that captures also

151

Proceedings of Formal Grammar 2004.
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Winter (eds.).
Copyright c© 2004, the individual authors.

152 / Anssi Yli-Jyrä and Matti Nykänen

non-projective dependencies, e.g. scrambling, the possibility of the ele-
ments of a sentence to lie in arbitrary permutations. However, it seems
that grammars that capture unrestricted scrambling fail to be mildly
context-sensitive, cf. Global Index Grammar (GIG) (Castaño 2003).
Limited scrambling is, however, captured by linear context-free rewrit-
ing systems (LCFRSs) (Vijay-Shanker et al. 1987) that are currently
the best characterisation for MCS grammars.

Linear Indexed Grammar (LIG) (Gazdar 1988) is a LCFRS that
represents nested non-local dependencies through an index pushdown
that is associated with nodes in derivation trees. The additional power
of some other LCFRSs is based on replacing the index pushdowns with
index storages of a more general type S. We will base our investigations
on extended right-linear Sc

pd-grammars (ERL-S-Gs) Wartena (2001)
whose storage type consists of c pushdowns.

In this paper, some new restrictions on ERL-Sk
pd-Gs are developed.

Through these restrictions we obtain various classes of DGs. The ob-
tained DGs can be used to describe restricted non-projective depen-
dencies and restricted scrambling, and they contain the Hays-Gaifman
DGs as a subclass.

The important contribution of this paper is to show that when we
set bounds for nested crossing depth and non-projectivity depth, we
obtain classes of DGs that are mildly context-sensitive. The length of a
longest chain (___ · · ·__) of crossing dependencies constitute a lower
bound for the nested crossing depth that is defined, in this paper, as
the number of concatenated pushdowns c needed in derivation. By the
non-projectivity depth, we mean the number of times dependency links
climb from a projective position to a non-projective one along a path
of directed dependencies.

The paper is structured as follows. Section 11.2 defines Context-
Free Linear Sc,Γ

pd -Grammars with Extended Domain of Locality. Sec-
tion 11.3 eliminates ambiguity that is related to the storage alloca-
tion. In Section 11.4, we introduce Colored Multiplanar Link Gram-
mars (CMLG), and discuss their properties in Section 11.5. In Section
11.6 we enforce a sufficient condition for acyclicity in c-Colored t-Non-
projective Dependency Grammars (CNDG) that form a sub-hierarchy
among CMLGs. The conclusion is in Section 11.8.

11.2 The Basic Machinery

11.2.1 Storage Type

Definition 7 A storage type is a tuple S = (C, Ci, Cf , Φ, Π, m), where

. C is the set of configurations, and Ci, Cf ⊆ C are respectively the

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 153

sets of initial and final configurations,
. Φ and Π are respectively the sets of instructions and predicates,
. m is the meaning function. It associates to each π ∈ Π the corre-

sponding function m(π) : C → {true, false}, and to each φ ∈ Φ
the corresponding partial function m(φ) : C → C.

The meaning function m is extended to Boolean combinations of the
predicates Π in the natural way and to nonempty strings φ = (Φ ∪
(BΠ × Φ+))+ and pairs (π, φ) ∈ (BΠ × Φ+) by defining m(φ1φ2)(κ) =
m(φ2)(m(φ1)(κ)), where κ ∈ C and by defining

m((π, φ))(κ) =

{

m(φ)(κ), if m(π)(κ) = true,

κ, otherwise.

Wartena (2001) defines a trivial (memoryless) storage Striv, an ordinary
pushdown Spd and concatenations on storage types. The concatenation
w.r.t. writing is denoted as ◦w.

a b ab b b a

 t t
r

w w t
r

 t
r

w t

SS S

bounded concatenation

S

writing sees these as one pushdown

Spd, pd,pd,2 3 4 cpd,pd,1

unused

FIGURE 1 Example of a possible configuration of a storage (...(((Striv

◦wSpd,1) ◦wSpd,2) ◦wSpd,3) . . .) ◦wSpd,c with marking of possibilities of
applying operations top (t), pop (r) and push (w).

11.2.2 Concatenating Storage Type

We restrict our attention to storages of type (...(((Striv ◦w Spd,1) ◦w
Spd,2)◦wSpd,3) . . .)◦wSpd,c that is intuitively a tuple 〈Spd,1,Spd,2,Spd,3,
. . . ,Spd,c〉 of c pushdowns Spd,p (Figure 1) with the restriction that
writing new elements into pushdown Spd,p is permitted only if all the
succeeding pushdowns Spd,p+1, Spd,p+2, Spd,p+3, . . . , Spd,c are empty.
Otherwise each pushdown Spd,p can be used independently of the oth-
ers. More formally, this storage type is defined as follows:

Definition 8 A writing-concatenating tuple of c pushdowns over a
stack alphabet Γ is the following storage type Sc,Γ

pd = (C, Ci, Cf , Φ,
Π, m):

154 / Anssi Yli-Jyrä and Matti Nykänen

. The configurations are C = ((Γ∪{], [, \})∗⊥)c, where ⊥ /∈ Γ is a spe-
cial symbol denoting the bottom of the pushdown, and], [, \ /∈ Γ are
special semaphore symbols reserved for the restriction of normalized
Sc,Γ

pd that is introduced in Section 11.3,

. the unique initial and final configuration is Ci = Cf = {⊥}c,

. the predicates are Π = {topp(a) | 1 ≤ p ≤ c, a ∈ Γ ∪ {⊥,], [, \}},

. the instructions are Φ = {id,undef} ∪ {pushp(β) | 1 ≤ p ≤ c,
β ∈ (Γ∪ {], [, \})+} ∪ {popp(β) | 1 ≤ p ≤ c, β ∈ (Γ ∪ {], [, \})+}.

The predicates Π and instructions Φ have the following basic meanings:

m(id)(〈α1,· · ·, αc〉) = 〈α1,· · ·, αc〉

m(topp(a))(〈α1,· · ·,αp−1, βb, αp+1,· · ·, αc〉) = (a = b)

m(pushp(β))(〈α1,· · ·,αp,⊥,· · ·,⊥〉) = 〈α1,· · ·,αp−1, αpβ,⊥,· · ·,⊥〉 ,

m(popp(β))(〈α1,· · ·,αp−1, αpβ
r, αp+1,· · ·,αc〉) = 〈α1,· · ·,αc〉

where βr is the reverse of any string β ∈ (Γ ∪ {], [, \})+ and the
functions m(φ) : C → C, φ ∈ Φ, remain undefined for all other cases.

11.2.3 Context-free Linear-S-Grammars

Definition 9 Let S = (C, Ci, Cf , Φ, Π, m) be a storage type.
A context-free linear S-grammar with extended domain of locality
(CFL-EDL-S-G) is a tuple G = (VN , VT , P, S, κ0), where

. the pairwise disjoint finite sets VN and VT are the nonterminal and
terminal alphabets, respectively,

. S ∈ VN is the start symbol, and κ0 ∈ Ci is the start configuration, and

. P is a finite set of productions of the form

Xφ1 → if π then ζ1 Y φ2 ζ2 (11.9)

X → if π then w (11.10)

where X,Y ∈ VN , φ1 ∈ (BΠ×Φ+)+, φ2 ∈ Φ+, π ∈ BΠ, ζ1, ζ2 ∈
(VN ∪ VT)∗, and w ∈ V ∗T .

The set S = ((VN ×C)∪ VT)∗ is called the set of sentential forms, and
σ ∈ S is said to derive τ ∈ S if and only if σ = α (X,κ)β and τ = αγβ
for some α, β, γ ∈ S and P contains either

. a production of the type (11.9) for which m(φ1(¬π,undef)φ2)(κ)
is defined and γ = ζ ′1 (Y,m(φ1φ2) (κ)) ζ ′2, where ζ ′1 and ζ ′2 are ob-
tained from ζ1 and ζ2 respectively by replacing every nonterminal
D by (D,κ0), or,

. a production of the type (11.10) for which m(π)(κ) = true and
γ = w.

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 155

The initial sentential form is 〈(S, κ0)〉. The derivations and the gener-
ated language of grammar G are defined in a usual way.

Definition 10 A CFL-EDL-S-G is a right-linear S-grammar with ex-
tended domain of locality (RL-EDL-S-G), if its productions of the
form (11.9) are such that ζ1 ∈ V ∗T and ζ2 ∈ ε.

A context-free linear S-grammar (CFL-S-G) (Weir 1994) is a CFL-
EDL-S-grammar, whose productions of the form (11.9) are such that φ1 =
ε and φ2 ∈ Φ.

A right linear S-grammar (RL-S-G) is an RL-EDL-S-G, whose pro-
ductions of the form (11.9) are such that φ1 = ε and φ2 ∈ Φ.

An extended right-linear S-grammar (ERL-S-G) (Wartena 2001) is
a CFL-S-G, whose productions of the form (11.9) are such that ζ1 ∈ VN

and ζ2 ∈ VT ∪ {ε}.

Theorem 6 CFL-EDL-S-Gs and CFL-S-Gs generate the same lan-
guages, and RL-EDL-S-Gs and RL-S-Gs generate the same languages.

Proof. The inclusions L(CFL-S-G) ⊆ L(CFL-EDL-S-G) and L(RL −
EDL− S −G) ⊆ L(RL-S-G) follows from the definition of the gram-
mars. To show that the reverse inclusions hold, we replace productions
of the form (11.9) by expanding them syntactically into

X → if true then ζ1Q
Y
φ1πφ2

ζ2

and define the productions for new nonterminals QY
ω inductively as

QY
ε → if true then Y id

QY
〈π′,φ′〉ω → if π′ then QY

φ′ω id

QY
〈π′,φ′〉ω → if ¬π′ then QY

ω id

QY
π′ω → if π′ thenQY

ω id

QY
φ′ω → if true then QY

ω φ
′

where π′ ∈ BΠ, φ′ ∈ Φ+, and where ω denotes suffixes of the three-part
string φ1πφ2. All the productions of the form (11.9) in the expanded
grammar contain only productions where φ1 = ε and φ2 ∈ Φ. The
expanded grammar recognizes the language of the original grammar. tu

Note that a derivation step of the original CFL-EDL-S-G may cor-
responds to multiple steps in the resulting CFL-S-G.

Theorem 7 Every RL-S-G can be reduced to an ERL-S-G.

Proof. A new nonterminal and a new production are created for each
non-empty prefix of ζ1 ∈ V +

T . This allows replacing ζ1 ∈ V +
T in the

156 / Anssi Yli-Jyrä and Matti Nykänen

original productions with ζ ′1 ∈ V
′
N in the productions of the ERL-S-G.

tu

The following two properties of ERL-S-Gs are needed in Section
11.5:

Proposition 8 ERL-S-G is a linear context-free rewriting system.
Thus, it is polynomially parseable and has linear growth property.

11.3 Normalized Storage

If the number of pushdowns is larger than the number of nested cross-
ing dependencies in derivations, CFL-EDL-Sc,Γ

pd -Gs have some freedom
in allocation of different pushdowns for different stack symbols. An ex-
ample of this is shown in Figure 2. Some ways to allocate pushdowns

a b

a

a

Spd,1 Spd,1 Spd,1

a

a

a

b

a

a b

a

pd,2S pd,2Spd,2S

strategy 2 strategy 3

tim
e

strategy 1

FIGURE 2 An example of ambiguity in storage allocation.

have already been banned by the the following restrictions that are
imposed by the concatenating storage type Sc,Γ

pd :

1. the LIFO discipline applies separately to each pushdown, and

2. the pushdowns are concatenated with respect to writing.

In addition to the effect of these two restrictions, we want to eliminate
strategies 2 and 3 shown in Figure 2. For this purpose, we propose the
following restrictions that eliminate this kind of ambiguity in allocation
of pushdowns:

3. An operation that writes to an empty pushdown Spd,p, p ≥ 2, is
allowed only if Spd,p−1 is nonempty.

4. An operation that writes to an empty pushdown Spd,p, p ≥ 2, is
allowed only if the current configuration contains a stack symbol
in Spd,p−1 that will be read before Spd,p becomes empty again.

Let Φ′ be an extended set of instructions on the normalized storage type
NormSc,Γ

pd . It is the union of Φ and {rpushp(β) | 1 ≤ p ≤ c, β ∈ Γ+} ∪
{rpopp(a) | 1 ≤ p ≤ c, a ∈ Γ}, where the new rpush and rpop
instructions obey the constraints 3 and 4, while the old push and pop
instructions do not.

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 157

The meanings of the new instructions are defined by means of sema-
phore symbols: when an rpushp instruction to an empty pushdown p,
p > 1, takes place, a semaphore symbol [is written on the bottom of
Spd,p and two semaphore symbols] and \ are written respectively on the
top of pushdowns Spd,p−1 and Spd,p. The symbol \ is kept always on the
top of Spd,p. Later, when a normal symbol is being read from the push-
down Spd,p−1 with rpop, these semaphores] and \ are first removed
respectively from Spd,p−1 and Spd,p if they have not yet been removed.
When the semaphore symbol [is read from Spd,p, this must happen im-
mediately after reading a non-semaphore symbol (rather than \) Spd,p.
If the semaphores cannot be read in this way, there are no other ways
to read them. Thus, the derivation will be stuck in the cases where the
restrictions 3 and 4 cannot be satisfied. More formally, the meaning
functions are:

m(rpushp(β))(κ) =

m(pushp 1(]) pushp([β\))(κ)}, if p ≥ 2 ∨ topp(⊥)(κ);

m(popp(\) pushp(β\))(κ), if p ≥ 2 ∨ topp(\)(κ);

m(pushp(β))(κ), otherwise,

and m(rpopp(a))(κ) =

m(popp(a))(κ), if p = 1;

m((topp(])∧topp+1(\), popp(]) popp+1(\))

(topp(\), popp(\a) pushp(\)) (¬topp(\), popp(a))

(topp([), popp ([))) (κ), otherwise.

Theorem 9 CFL-EDL-Sc,Γ
pd -Gs using rpush and rpop instructions

can be reduced to CFL-EDL-Sc,Γ
pd -Gs that don’t use these instructions.

Proof. These new instructions can be regarded as shorthand notations
which extend the transformation in Theorem 6 as follows:

Nonterminals QY
rpush1(β)ω, QY

rpop1(β)ω and QY
rpopp(β)ω where p ≥ 2

are replaced respectively with nonterminals QY
push1(β)ω, QY

pop1(β)ω and
Q(topp(])∧topp+1(\),popp(]) popp+1(\)) (topp(\), popp(\a) pushp(\)) (¬ topp(\), popp(a))

(topp([), popp([)). NonterminalsQY
rpushp(β)ω, where p ≥ 2, create the gram-

mar rules

QY
rpushp(β)ω → if topp(⊥) thenQY

ω pushp−1(]) pushp([β\)

QY
rpushp(β)ω → if topp(\) thenQY

ω popp(\) pushp(β\)

QY
rpushp(β)ω → if ¬topp(⊥) ∧ ¬topp(\) thenQY

ω pushp(β). tu

158 / Anssi Yli-Jyrä and Matti Nykänen

Definition 11 A Context-free linear normalized Sc,Γ
pd grammar with

extended domain of locality (CFL-EDL-NormSc,Γ
pd -G) is a CFL-EDL-

Sc,Γ
pd - grammar whose rules do not directly use push and pop instruc-

tions, but use rpush and rpop instead.

Theorem 10 CFL-EDL-NormSc,Γ
pd -Gs allocate pushdowns for differ-

ent stack symbols so that they conform the restrictions 1 - 4.

Proof. The proof is omitted for brevity. tu

Dependencies are binary relations between string positions of the gen-
erated string. They are described by symbols that are written to a
pushdown at one string position and read from that pushdown at an-
other position. The reason for having multiple pushdowns in the stor-
age NormSc,Γ

pd is to enable capturing nested crossing dependencies. For
any set of dependency links whose starting and finishing times are
disjoint, there is only one way to allocate NormSc,Γ

pd for these links.
Yli-Jyrä (2003) has experimented with a data structure equivalent to

NormSc,Γ
pd and shown that dependency trees of a small dependency tree-

bank can be represented as a sequence of configurations of such a data
structure. This motivates introduction of the grammar formalisms of
Sections 11.4 and 11.6.

11.4 Colored Multiplanar Link Grammar (CMLG)

Definition 12 A nonterminal-free NormSc,Γ
pd -grammar is a RL −

EDL −
NormSc,Γ

pd − G G = (VN , VT , P, S, κ0) for which VN = {S,X} and
whose productions are of the following forms:

S → if true then Xφ2,1 (11.11)

Xφ1,r → if ∧1≤p≤c topp(⊥) then ε (11.12)

Xφ1,r → if π then aXφ2,1 (11.13)

Xφ1,r → if π then Xφ2,r+1 (11.14)

where a ∈ VT , π ∈ BΠ, 1 ≤ r ≤ c, φ1,r ∈ {rpopp(a) | 1 ≤ p ≤ r, a ∈
Γ}∗, and φ2,s ∈ {rpushq(α) | s ≤ q ≤ c, α ∈ Γ∗}.

Definition 13 A colored multiplanar link grammar (CMLG) is a
structure G = 〈VT , ΛD, ΛH , c, Ψ〉 where VT is the set of terminal
symbols, ΛD and ΛH = {a | a ∈ ΛD} are respectively the sets of depen-
dent and governor labels, c is the number of colors, and Ψ is the set of

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 159

colored rules of the forms

∗(Y1 . . . Ym) (11.15)

(p1/V1 . . . pn/Vn)∗ (11.16)

a(p1/V1 . . . pn/Vn ∗ q/Y1 Y2 . . . Ym) (11.17)

0(p1/V1 . . . pn/Vn ∗ q/Y1 Y2 . . . Ym) (11.18)

where a ∈ VT , 0 /∈ VT , and V1, V2, . . . , Vn, Y1, Y2, . . . Ym ∈ ΛD ∪ ΛH ,
p1, p2, . . . , pn, q ∈ [1, 2, .., c] and pi ≤ pi+1 for 1 ≤ i ≤ n. Moreover, in
rules of type (11.18)1 it holds that max{p1, p2, . . . , pn}+ 1 ≤ q ≤ c.

The semantics of the grammar G is defined by reducing it to a
nonterminal-free NormSc,Γ

pd -grammar G = (VN , VT , P, S, κ0), with

stack alphabet Γ = {(←−x ,) , (−→x ,) | x ∈ ΛD} and set P containing
the following productions:

S → if true thenX push1(ymym−1 . . . y1)

for each rule of type (11.15);

X poppn(vn) · · · popp1(v1)→ if ∧1≤p≤c topp(⊥) then ε

for each rule of type (11.16); and respectively

X poppn(vn) · · · popp1(v1)→ if true then aX pushq(ymym−1 . . . y1),

X poppn(vn) · · ·popp1(v1)→ if true thenX pushq(ymym−1 . . . y1)

for each rule of type (11.17) and (11.18), where vi ∈ λ(Vi) and yi ∈ ρ(Yi)
and functions λ, ρ : (ΛD ∪ ΛH)→ 2Γ are defined as follows:

λ(x) = {(−→x ,)} ρ(x) = {(←−x ,)}

λ(x) = {(←−x ,)} ρ(x) = {(−→x ,)},

11.5 Mild Context-Sensitivity of CMLGs

The notion of mild context-sensitivity is an attempt by Joshi (1985) to
express the formal power needed to define natural languages.

Definition 14 A class of grammars is mildly context-sensitive if the
grammars of this class are (i) polynomial time parseable and (ii) they
capture multiple dependencies, limited crossing dependencies and the
copy language and its grammars generate (iii) a proper superclass of
context-free languages where (iv) all the languages have linear growth
property.

Theorem 11 Gc, where c ≥ 2, is mildly context-sensitive.

Proof. We will now prove that Gc has the properties (i) - (iv).

1If we drop the rules of the form (11.18), we will not be able to express the copy
language as required for MCS grammars.

160 / Anssi Yli-Jyrä and Matti Nykänen

(i)As shown previously, each CMLG G ∈ Gc can be reduced to a poly-

nomial size ERL-Sc,Γ
pd -G, and the latter is known to be polynomially

parseable. The class Gc are, thus, polynomially parseable.

(ii)The capability to describe multiple dependencies is usually repre-
sented as an ability to describe languages L1 = {anbncn | n ≥ k},
L2 = {anbmcnmn | m,n ≥ k}, and L3 = {ww | w ∈ {a, b}i, i ≥ k},
where k is a positive integer.

For the language L1 = {anbncn | n ≥ 2}, we construct a CMLG
G = 〈VT , ΛD,ΛH , 2, Ψ〉 where VT = {a, b, c}, ΛD = {A,B,C, b, c}
and with the rules

∗ (A) (1/C)∗ a(1/A ∗ 1/A b)

a(1/A ∗ 1/B b) b(1/b 1/B ∗ 2/B c) b(1/b 2/B ∗ 2/C c)

c(2/c 2/C ∗ 2/C) c(2/c 2/C ∗ 1/C)

For the language L2 = {anbmcndm | m,n ≥ 1}, we construct
a CMLG G = 〈VT , ΛD, ΛH , 2, Ψ〉 where VT = {a, b, c, d}, ΛD =
{A,B,C,D, c, d} and with the rules

∗ (A) (1/D)∗ a(1/A ∗ 1/A c) b(1/A ∗ 2/B d)

b(2/B ∗ 2/B d) b(2/B ∗ 2/C d) c(1/c 2/C ∗ 2/C)

c(1/c 2/C ∗ 2/D) d(2/d 2/D ∗ 2/D) d(2/d 2/D ∗ 1/D)

For the language L3 = {ww | w ∈ {a, b}i, i ≥ 2}, we con-
struct a CMLG G = 〈VT , ΛD, ΛH , 2, Ψ〉 where VT = {a, b},
ΛD = {U, V, Y, a, b} and with the rules

∗ (U) (1/Y)∗ a(1/U ∗ 1/a U)

b(1/U ∗ 1/b U) 0(1/a 1/U ∗ 2/V a) 0(1/b 1/U ∗ 2/V b)

0(1/a 2/V ∗ 2/V a) 0(1/b 2/V ∗ 2/V b) a(2/a 2/V ∗ 2/V a)

b(2/b 2/V ∗ 2/V b) a(2/a 2/V ∗ 1/Y a) b(2/b 2/V ∗ 1/Y b)

(iii)We have already shown that grammars in G ∈ Gc, c ≥ 2, can
express non-context-free languages. Inclusion of all context-free lan-
guages is shown by reduction from the Hays-Gaifman dependency
grammars. The rule set Π of these grammars contain rules of the
following three types:

1. ∗(X) — gives word categories the elements of which may
govern the sentence,

2. X(V1 V2 . . . Vn ∗ Y1 Y2 . . . Ym) — gives those categories
which may derive directly from the category X and specified
their relative positions, and

3. X : w — gives for word category X a word w belonging to it.

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 161

We construct a CMLG G = 〈VT , ΛD, ΛH , c, Ψ〉 where VT =
{w | (X : w) ∈ Π}, ΛD = {X | X : w ∈ Π} and with the set
Ψ consisting of rules (∗(X)) for each (∗(X)) ∈ Ψ, and of rules

w(X 1/V1 1/V2 . . . 1/Vn ∗ 1/Y1 Y2 . . . Ym), and

w(1/V1 1/V2 . . . 1/Vn ∗ 1/Y1 Y2 . . . Ym X)

for each (X(V1 V2 . . . Vn ∗ Y1 Y2 . . . Ym)) ∈ Π and (X : w) ∈ Π.

(iv)Languages of CMLGs have linear growth property because CMLGs

can be reduced to ERL-Sc,Γ
pd -Gs that have this property. tu

We denote the class of CMLG with c colors by Gc.

CMLGs can associate to the input general dependency graphs. In
fact, for any finite dependency graph attached to a string of word to-
kens, there is a CMLG that generates the string and associates this
structure to the string:

Theorem 12 If D = (V,E) is a directed graphs without cycles of
length 1 and ≺ is an order among the vertices V , then there is a
CMLG that generates a string v1v2 . . . v|V | ∈ V

∗, where vi ≺ vi+1 for
all 1 ≤ 1 ≤ |V | − 1, with a derivation tree whose storage operations
encode the edges E.

Proof. A edges (links) of the directed graph D can be colored in a
correct manner using a method that has been informally presented in
Yli-Jyrä (to appear). After the links have been colored, we know the
number of colors required, and it is easy to extract from the coloredD a
CMLG that generates the string v1v2 . . . v|V | and associates the desired
derivation tree for the string. The details are omitted for brevity. tu

However, the current definition of CMLGs has the restriction that the
number of links leaving each word token is bounded by the grammar.
Linguistically, having no free dependents is a severe restriction, but we
believe that it is relatively easy to simulate such features in the CMLG.

Theorem 13 Link grammars (Sleator and Temperley 1991) without
connectors that can link one or more tokens are reducible to G ∈ G1.

Proof. Omitted for brevity. tu

It should be noted, that underspecific link colors could be used in the
rules of CMLGs in order to gain more flexibility when the possible
linearisations are unknown. An underspecific rule can be seen as a rule-
schema that is expanded to a finite set of normal rules.

162 / Anssi Yli-Jyrä and Matti Nykänen

11.6 c-Colored t-Non-projective Dependency
Grammar

Linguistically oriented dependency grammars describe usually acyclic
graphs. We are therefore interested to find a fragment of CMLG that
would generate only acyclic graphs.

It is a well known that acyclicity of finite graphs is not first-order
definable property. We get acyclicity neither as a by-product of deriva-
tion, because the derivation trees of the underlying non-terminal-free
NormSc,Γ

pd -grammars can be completely different from the link structure
represented by the storage operations. There is no limit for the length
of “almost cyclic” paths that can be contained in the link structure.
Thus, we have to enforce acyclicity of the link structure by some other
means, by making a restriction to a subclass of acyclic structures.

In the following, we will propose a parametrized solution that is
based on a new complexity measure called the non-projectivity depth
of dependency paths.

Definition 15 A sequence of directed dependency links connecting
string position i to string position j so that j is transitively governed
by i is called a dependency path. The non-projectivity depth of an acyclic
dependency path is the sum of the number of visited string positions
for which the incoming (governor) link is shorter than the outgoing
(dependent) link and the number of positions where the incoming link
is stored to a pushdown whose index is greater than the index of the
pushdown containing the outgoing link.

S

S

pd,i

pd,j where j>i

non−projectiveprojective

FIGURE 3 Cycles contain at least one special kind of linkage (in rounded
boxes) that are not found in acyclic projective graphs.

Using the non-projectivity depth is motivated by the facts that (i) it
is always greater than zero for cyclic dependency paths, and (ii) it is
constantly zero for projective dependency trees. Moreover, if we let
grammars assign each token a the maximum non-projectivity depth of
a path from an independent token to token a, the grammars will fail
to build cyclic dependency paths, because such the maximum is not
well-defined if a path is acyclic. Based on these observations, we define
a subset of CMLGs that can generate only acyclic dependency graphs
(but not all them).

A Hierarchy of Mildly Context-Sensitive Dependency Grammars / 163

Definition 16 A colored t-non-projective dependency grammar
(CNDG) is a structure G = 〈VT , ΛH , ΛD, c, Ψ, t〉 where VT , ΛD,
ΛH , c, and Ψ are defined in the same way as done for CMLGs, and t
is the bound for non-projectivity depth in dependency paths.

The semantics of grammar G is much like in the case of CMLGs
(Definition 13). However, there are the following differences:

. The stack alphabet will be Γ = {(←−x , i) , (−→x , i) | x ∈ ΛD, 0 ≤ i ≤ t}.

. The functions λ, ρ : (ΛD ∪ΛH)→ 2Γ are defined in such a way that

λ(x) = {(−→x , i) | i ∈ [0..t]} ρ(x) = {(←−x , i) | i ∈ [0..t]}

λ(x) = {(←−x , i) | i ∈ [0..t]} ρ(x) = {(−→x , i) | i ∈ [0..t]}.

. From the obtained productions of the forms (11.13) and (11.14) we
keep only those productions where the counters i in the pairs (X, i)
(i) increase monotonically from incoming (governor) links to outgo-
ing (dependent) links, (ii) increase strictly when an outgoing link is
longer than an incoming link of the same side, (iii) increase strictly
in left outgoing links with color p when there is a right incoming link
with a color q ≥ p+1, and (iv) do not increase more than necessary.
This is expressed formally as follows:

Let (ai, li) = vi and (bj , rj) = yj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m,
be the stack symbols and α ∈ VT ∪ {ε} be the lexical anchor in a
constructed production

X poppn(vn) · · · popp1(v1)→ if true thenαX pushq(ymym−1 . . . y1).

This production is kept if, for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, it holds
that

ai ∈
←−
Γ implies ti = max{l∗, r∗, ln,i+1, spi}, and

bj ∈
−→
Γ implies uj = max{l∗, r∗, rj−1,1},

where
l∗ = max{0} ∪ {li | 1 ≤ i ≤ n, ai ∈

−→
Γ }

r∗ = max{0} ∪ {rj | 1 ≤ j ≤ m, aj ∈
←−
Γ }

ln,k = max{0} ∪ {li + 1 | k ≤ i ≤ n, ai ∈
−→
Γ }

rk,1 = max{0} ∪ {rj + 1 | 1 ≤ j ≤ k, aj ∈
←−
Γ }

sp = max{0} ∪ {ri + 1 | 1 ≤ i ≤ m, ai ∈
←−
Γ , p < q}.

Theorem 14 Classes of CNDG with at least two colors are mildly
context-sensitive.

Proof. The proof can be given in a similar way as in Theorem 11. Note
in particular, that the example grammars for languages L1, L2 and L3

and the representation for the Hays-Gaifman dependency grammars
given there have bounded non-projectivity depth. tu

164 / Anssi Yli-Jyrä and Matti Nykänen

The following theorem relates CNDGs to CMLGs:

Theorem 15 Every CNDG can be reduced to a CMLG.

Proof. Instead of constructing a nonterminal-free NormSc,Γ
pd -grammar

directly from each CNDG as we did above, we will now have to con-
struct in a similar way a CMLG where counters for non-projectivity
depth are visible already in the link labels and in colored rules. tu

The number of productions in CNDGs can much larger than in cor-
responding CMLGs. However, it is possible to parse the sentence first
with a CMLG and then re-parse the parse forest using CNDGs that will
filter out dependency graphs whose non-projectivity depth is greater
than t. When used in this way, CNDGs may in fact provide more ef-
ficient filtering than what is generally possible by complete methods
(e.g. backtracking search) for acyclicity testing.

11.7 Grammars for Dependency Trees

An acyclic dependency graph is a dependency tree if and only if

. it has a unique root

. all the word tokens except the root are governed by exactly one
other node.

To obtain dependency grammars that assign dependency trees to the
strings, we can specialize colored non-projective dependency grammars
so that these two requirements are satisfied. First, we require that all
the rules of the forms (11.17) and (11.18) contain exactly one governor
link, and that the rules of the form (11.15) or the form (11.16) contain
only one category (n = 1 or m = 1). Furthermore, the derivations
where rules of both forms (11.15) and (11.16) must be discarded.

11.8 Conclusion

We have presented new classes of link and dependency grammars,
namely the Colored Multiplanar Link Grammar (CMLG) and its sub-
types, the c-Colored t-Non-projective Dependency Grammar (CNDG).
The semantics of these grammars was given by reduction to Extended
Right-Linear Sc,Γ

pd -grammar Wartena (2001), which immediately relates
CMLGs and CNDGs with existing families of grammars.

The important contribution of this paper is to show that CMLGs
and CNDGs are mildly context-sensitive and that the number of colors
c available in CMLGs induce an infinite hierarchy of classes of CMLGs.
Furthermore, a sub-hierarchy of CNDGs in each class of CMLGs is
obtained by restricting the non-projectivity depth of the dependency

References / 165

paths. Dependency grammars that generate dependency trees up to a
bounded non-projectivity depth form a subset of CNDGs.

We argue that the presented grammars have linguistic and practical
relevance, because (i) the core ideas of the CMLG derivations have
been tested against a small treebank (Yli-Jyrä 2003), (ii) the CMLG
hierarchy provides a useful complexity measure for natural language
sentences (iii) CMLGs are mildly context-sensitive and (iv) lexicalized,
and (v) they give rise to finite-state approximations that assign non-
projective dependency structures to strings (Yli-Jyrä 2004).

(This paper version appears in FGNancy 2004 pre-proceedings.)

Acknowledgements

The work was partially funded by NorFA under the personal Ph.D.
scholarship (ref.nr. 010529) of the first author.

References

Castaño, J. M. 2003. Global index grammars and descriptive power. In R. T.
Oehrle and J. Rogers, eds., Proceedings of MOL 8, 2003 .

Gaifman, H. 1965. Dependency systems and phrase-structure systems. Inf.
Control 8(3):304–37.

Gazdar, G. 1988. Applicability of indexed grammars to natural languages.
In U. Reyle and C. Rohrer, eds., Natural Language Parsing and Linguistic
Theories. Dordrecht: Reidel.

Hays, D. G. 1964. Dependency theory: A formalism and some observations.
Language 40:511–525.

Joshi, A. K. 1985. Tree Adjoining Grammars: how much context-sensitivity
is required to provide reasonable structural descriptions? In D. Dowty,
L. Karttunen, and A. Zwicky, eds., Natural Language Parsing , pages 206–
250. Cambridge: Cambridge University Press.

Sleator, Daniel and Davy Temperley. 1991. Parsing english with a link gram-
mar. Technical Report CMU-CS-91-196, Carnegie Mellon University, Com-
puter Science.

Tesnière, L. 1959. Éléments de Syntaxe Structurale. Paris: Editions Klinck-
sieck.

Vijay-Shanker, K., David Weir, and Aravind K. Joshi. 1987. Characterizing
structural descriptions produced by various grammatical formalism. In
25th ACL, pages 104–111. Stanford, CA.

Wartena, C. 2001. Grammars with composite storages. In M. Moortgat, ed.,
LACL’98 , vol. 2014 of LNAI , pages 266–285.

Weir, David J. 1994. Linear iterated pushdowns. Computational Intelligence
10(4):422–430.

166 / Anssi Yli-Jyrä and Matti Nykänen

Yli-Jyrä, A. 2003. Multiplanarity - a model for dependency structures in
treebanks. In The Second Workshop on Treebanks and Linguistic Theories.
Växjö, Sweden.

Yli-Jyrä, A. 2004. Axiomatization of non-projective dependency trees
through finite-state constraints that analyse crossing bracketings (prelim-
inary title). In the COLING 2004 workshop “Recent Advances in Depen-
dency Grammar”. University of Geneva, Switzerland.

Yli-Jyrä, A. to appear. Coping with dependencies and word order or how to
put Arthur’s court into a castle. In H. Holmboe, ed., Nordisk Sprogteknologi
2003. Årbog for Nordisk Sprogteknologisk Forskningsprogram 2000–2004 .

