Python for Computational Linguistics

Damir Ćavar dcavar@indiana.edu dcavar@unizd.hr

DGfS Herbstschule in Bochum

September 2005

Frequency Profiles

- *Uni-gram* frequencies: freq.py, . . .
- Bi-gram frequencies:
- General *n*-gram models
- Examples: from [MacKay(2003)]

i	a_i	72 :		
		p_i		
1	a	0.0575	a	
2	b	0.0128	ъ	П
3	С	0.0263	С	П
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	6
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	٠
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	О	
16	p	0.0192	P	
17	q	0.0008	q	٠
18	\mathbf{r}	0.0508	r	
19	s	0.0567	8	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	·
23	W	0.0119	w	
24	x	0.0073	х	
25	У	0.0164	У	
26	z	0.0007	z	P
27	_	0.1928	_	L

© 2005 by Damir Ćavar

Frequency Profiles

- What can we do with n-gram frequency profiles?
 - Compression, modeling expectations, study of quantitative language properties, . . .
- What value for *n* is best for what purpose?

© 2005 by Damir Ćavar

Language Identification

- *N*-gram models for Language Identification
- Files: lid.py, lidtrainer.py, *.dat
- Calculations:
 - Mean of frequencies
 - Deviation

- Measures of central tendencies of data
 - Mean
 - Median
 - Mode
- Measures of variation/variability
 - Spread in data

- Arithmetic Mean
 - Data set:

File	Count words
Flo031201.txt	10346
Flo031202a.txt	5031
Flo031202b.txt	11876
Flo031203.txt	12175
Flo031204.txt	10943

Arithmetic Mean

$$arithmetic\ mean = \frac{sum\ of\ measures}{number\ of\ measures}$$

– example:

$$\frac{10346 + 5031 + 11876 + 12175 + 10943}{5} = 10074.2$$

Median

Middle value of ordered measure values

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10346
Flo031204.txt	10943
Flo031202b.txt	11876
Flo031203.txt	12175

Median

– Decrease relevance of outliers:

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10346
Flo031204.txt	10943
Flo031202b.txt	11876
Flo031203.txt	12175

- Median
 - with even number of elements:

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10346
Flo031204.txt	10943
Flo031202b.txt	11876

– Arithmetic mean of the two middle values:

$$\frac{10346 + 10943}{2} = 10644.5$$

Mean: 10074.2

Median: 10943

- Mean is reduced on the basis of the outlier:
 - Flo031202a.txt 5031
- Median may be a better indicator of central tendency if outliers/extreme values are present.

Mode

– The measure value that occurs most often:

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10943
Flo031204.txt	10943
Flo031202b.txt	6329
Flo031203.txt	12175

- Mode = 10943

- Approximation of
 - Mode
 - mean 3 (mean median)
 - Median
 - (2 mean + mode) / 3
 - Mean
 - (3 median mode) / 2

Notation

- Mean (x bar): \bar{x}
- Mean of a population: μ
- Sum of values: ∑

- Notation example:
 - Arithmetic mean:

$$\overline{x} = \frac{\sum x}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Arithmetic mean for grouped data:

Files	Count words
35%	0-4999
30%	5000-9999
25%	10000-14999
10%	15000-19999

– With 100 sample documents what is the arithmetic mean?

Arithmetic mean for grouped data:

$$\overline{x} = \frac{\sum fx}{n}$$

- f = frequency
- x = midpoint

Arithmetic mean for grouped data:

Files	Midpoint	fx	Count words
35	2500	87500	0-4999
30	7500	225000	5000-9999
25	12500	312500	10000-14999
10	17500	175000	15000-19999

$$\overline{x} = \frac{\sum fx}{n} = \frac{87500 + 225000 + 312500 + 175000}{100} = \frac{800000}{100} = 8000$$

Median for grouped data:

$$median = L + \frac{w}{f_{med}} (.5n - \sum f_b)$$

- -L = lower class limit that contains the interval
- -n = total number of measurements
- w = class width
- $-f_{med}$ = frequency of the class containing the median

Median for grouped data:

Files	Count words
35	0-4999
30	5000-9999
25	10000-14999
10	15000-19999

$$median = 5000 + \frac{4999}{30} (50 - 35) = 7499.5$$

- Distribution
 - Symmetric distribution
 - Skewed curves
 - negatively skewed curves
 - positively skewed curves

Symmetric distribution

Mean, median and mode are equal.

- Skewed curves
 - Negatively skewed distribution: mean < median < mode

- Skewed curves
 - Positively skewed distribution: mode < median < mean

Variability

Experiment 1	Experiment 2
195	10
210	0
199	400
200	20
205	380
190	200
200	390
201	200

- Variability
 - For both experiments:

• mean: 200

• mode: 200

• median: 200

- Experiment 2 has greater variation.
- Measure of variation:
 - Range
 - Deviation
 - Variance

Range

- Difference between largest and smallest value:
 - Experiment 1: 210 190 = 20
 - Experiment 2: 400 0 = 400

Deviation

- Distance of the measurements away from the mean:
 - Experiment 1: less
 - Experiment 2: more

Notation

- s^2 = variance of a sample
- $-\sigma^2$ = variance of a population
- s = standard deviation of a sample
- $-\sigma$ = standard devition of a population

Language Identification

- General *n*-gram class
- Files: ngram.py
- Task:
 - Develop a simple n-gram script on the basis of the n-gram class for uni-gram, bi-gram, and tri-gram models
 - Read in the data from the Brown corpus: a. n-gram model of the tokens and b. n-gram model of the types

Collocations

- Words in context
 - distribution
 - fixed expressions
 - collocations
 - statistical properties
 - function words

Tests for collocations

- Statistics
- Significance tests

Significance

- Notations:
 - Type I error rate of .05
 - Alpha level of .05 or $\alpha = .05$
 - Finding is significant at the .05 level
 - Confidence level is 95%
 - 95% certainty that a result is not due to chance
 - A I in 20 chance of obtaining the result

- Statistics as testing of scientific hypotheses
- Strategies:
 - Formulating a Research Hypothesis or Alternative Hypothesis (Ha)
 - Statement of the expectation to be tested

- Strategies:
 - Derivation of a statement that is the opposite of the research hypothesis: Null Hypothesis (H0)
 - Testing the null hypothesis

- Statistics as testing of scientific hypotheses
- Strategies:
 - If the null hypothesis can be rejected, this is evidence in favor of the research hypothesis.

- Strategies:
 - Usually:
 - No prove for research hypothesis, just support for it.

- Research Hypothesis:
 - At IU linguistics students perform differently in statistics than computer science students.
 - $H_a: \mu_1 \neq \mu_2$
 - $H_a: \mu_1 \mu_2 \neq 0$

- Null Hypothesis:
 - At IU linguistics students perform the same in statistics as computer science students.
 - H_0 : $\mu_1 = \mu_2$
 - H_0 : μ_1 μ_2 = 0

- More specific: Research Hypothesis:
 - At IU linguistics students perform better in statistics than computer science students.
 - $H_a: \mu_1 > \mu_2$
 - H_a : $\mu_1 \mu_2 > 0$

- More specific: Null Hypothesis
 - At IU linguistics students perform worse in statistics, or equal to computer science students.
 - $H_0: \mu_1 \le \mu_2$
 - $H_0: \mu_1 \mu_2 \le 0$

- Given the distribution of a known area
 - e.g. normal distribution
- estimate the probability of obtaining a certain value as a result of chance.
- If the probability is low, the likelihood for a mere coincidence is low, i.e. a certain theory is correct.

- Two possible outcomes of test:
 - Rejection of null hypothesis
 - Acceptance of null hypothesis

Significance Table

	Ρ	0.99	0.95	0.10	0.05	0.01	0.005	0.001
d.f	. 1	0.00016	0.0039	2.71	3.84	6.63	7.88	10.83
1	2	0.020	0.10	4.60	5.99	9.21	10.60	13.82
1	3	0.115	0.35	6.25	7.81	11.34	12.84	16.27
1	4	0.297	0.71	7.78	9.49	13.28	14.86	18.47
L	100	70.06	77.93	118.5	124.3	135.8	140.2	149.4

- Probability as significance level
- Example: Collocations
 - Null Hypothesis: independence of two words
 - $P(w_1w_2) = P(w_1) P(w_2)$

 Preferred activities over a population sample of 125 people:

	bowling	dancing	computer	total
male	30	29	16	75
female	12	33	5	50
total	42	62	21	125

- Is the choice of activities related to the gender?
 - If the two variables are independent, we can use these probabilities to predict how many people should be in each cell.
 - If the actual number is different from the expectation for independence, the two variables must be related.

- Research Hypothesis:
 - The variables are dependent.
- Null Hypothesis:
 - The variables are independent.

- Overall probability of a person in the sample being:
 - male: 75/125 = .6
 - female: 50/125 = .4

- Overall probability of each preference:
 - bowling: 42/125 = .336
 - dancing: 62/125 = .496
 - computer games: 21/125 = .168

- Independent events: multiplication rule
 - The probability of two events occurring is the product of their two probabilities.

- Probability of a person in the sample being male and preferring bowling:
 - P(male & bowling): $.6 \times .336 = .202$
 - Expectation: $.202 \times 125 = 25.2$

- Multiplication of row total with column total and division by total number in sample:
- $(75 \times 42) / 125 = 25.2$

	bowling	dancing	computer	total
male	30 (25.2)	29 (37.2)	16 (12.6)	75
female	12 (16.8)	33 (24.8)	5 (8.4)	50
total	42	62	21	125

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$
 • Formula:

$$\chi^2 = \frac{(30 - 25.2)^2}{25.2} + \frac{(29 - 37.2)^2}{37.2} + \frac{(16 - 12.6)^2}{12.6} + \frac{(12 - 16.8)^2}{16.8} + \frac{(33 - 24.8)^2}{24.8} + \frac{(5 - 8.4)^2}{8.4} = 9.097$$

- The larger χ^2 , the more likely the variables are related.
- Square effect of cells with large differences.

- Probability distribution of χ^2 :
 - Critical values in table
 - Degree-of-freedom:
 - df = (number-of-rows I) x (number-of-columns I)
 - Example: $(2 1) \times (3 1) = 2$
 - Example: 9.097 (< .025; > .01)

- Example: 9.097 (< .025; > .01)
 - Significance (at levels: .05, .01)!
 - Rejection of Null Hypotheses (independence of variables)

- Collocations
 - new, companies

	wi=new	wi¬new	total
w2=companies	8	4667	4675
w2¬companies	15820	14287181	14303001
total	15828	14291848	14307676

Statistics

- Maximum Likelihood Estimate
 - Frequency oriented
 - No inclusion of prior belief: here e.g. assuming a normal distribution, i.e.
 - No inclusion of a prior probability distribution

Statistics

- Example: Coin tossing
 - Observation: $8 \times head \& 2 \times tail$
 - Prior probability distribution: $5 \times head \& 5 \times tail$
 - Probability mass: $\frac{1}{2}$
 - How does observation: X = tail change our expectation?

© 2005 by Damir Ćavar

Statistics

- Example: Coin tossing
 - Bayesian answer: update prior belief (= prior probability distribution) in face of evidence and generate posterior probability estimate

© 2005 by Damir Ćavar

Bayesian Statistics

• Example:

- Data is added incrementally/sequentially
- Given an a-priori probability distribution
 - * Update our beliefs whith every new datum
 - * Calculate Maximum A Posteriori (MAP) distribution
- MAP probability becomes the new prior probability for the next datum

Information Theory

Surprise effect:

- Coin tossing and observing the results
- What is our prior believe or expectation about an outcome?
- How surprised are we to see a certain outcome?

• Data compression:

- Knowing about the distributional properties of some data
- What is the best compression we can get by mapping it to bit-representations?
- Is there a formal way to calculate the optimal representation for data transmission?

Information Theory

• Entropy:

- Entropy as uncertainty
 - * Tossing a coin = not knowing what the outcome will be.
 - * Probability distribution:
 - · Fair coin
 - · Biased coin, unlimited probability distributions

• Entropy:

- Entropy as uncertainty
 - * Is there a way to calculate the uncertainty and formulate a function on the basis of a probability distribution?
 - * Let us design such a function:
 - \cdot H[X] is the measure for X, with X a probability distribution
 - \cdot H takes X, with $X = \{P(1), P(2), \dots P(N)\}$ as an argument
 - · and returns a real number, the value of uncertainty

- Designing a function for Entropy:
 - 1. Maximum uncertainty in uniform distribution: every possible outcome is equally likely
 - \rightarrow This is the maximum H can return
 - 2. H is a continuous function over the probabilities
 - ightarrow changing the probabilities slightly leads to slight changes of H

Grouping Probabilities:

$$-X = \{P(1) = .5, P(2) = .2, P(3) = (.3)\}:$$

– is equivalent to:

$$* X = {P(1) = .5, P(Y) = .5}$$

*
$$Y = \{P(2) = .4, P(3) = .6\}$$

3. Uncertainty H cannot depend on the grouping of events for a random variable.

- Entropy: Formal reformulation of (1-3)
 - H(p) is a real valued function of $P(1), P(2), \dots P(N)$, with N the number of values for the random variable or length of *domain*, then
 - 1. $H(P(1), P(2), \dots P(N))$ reaches a maximum if the distribution is uniform: $P(i) = 1/N, N = len(i), \forall i$.
 - 2. $H(P(1), P(2), \dots P(N))$ is a continuous function of all P(i)'s.

© 2005 by Damir Ćavar

- Entropy: Formal reformulation of (1–3)
 - 3. Independence of subsets of probability groups: for N probabilities grouped into k subsets, w_k :

$$w_1 = \sum_{i=1}^{n_1} p_i; w_2 = \sum_{i=n_1+1}^{n_2} p_i; \dots$$

- Entropy: Formal reformulation of (1–3)
 - 3. Independence of subsets of probability groups: assumption

$$H[p] = H[w] + \sum_{j=1}^{k} w_j H[\{p_i/w_j\}_j]$$

 $-\{p_i/w_j\}$ is: sum extends over p_i 's that make up a particular w_j

- Entropy: Summary
 - Given the three requirements it follows that:

$$H[X] = k \sum_{x \in X} Pr(x) log Pr(x)$$

— with k and arbitrary constant [8,40,44]. For k=-1 and log_2 the units are bit.

• Average Shannon Entropy: measured in bits

$$H[X] = -1\sum_{x \in X} Pr(x) lg Pr(x)$$

$$H[X] = \sum_{x \in X} Pr(x) lg \frac{1}{Pr(x)}$$

• Average Shannon Entropy of one outcome: measured in bits

$$h[x] = Pr(x)lg\frac{1}{Pr(x)}$$

Joint Entropy

• For a pair of random variables: $X, Y \sim p(x, y)$

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) lgp(x,y)$$

- $X = \{A = .4, B = .6\}$
- $Y = \{C = .2, D = .8\}$

Joint Entropy

•
$$X \wedge Y = \{AC = .4 \times .2, AD = .4 \times .8, BC = .6 \times .2, BD = .6 \times .8\}$$

•
$$X \wedge Y = \{AC = .08, AD = .32, BC = .12, BD = .48\}$$

•
$$Z = \{AC = .08, AD = .32, BC = .12, BD = .48\}$$

© 2005 by Damir Ćavar

Mutual Information

- Reduction of uncertainty of one random variable due to knowing about another.
- Amount of information one random variable contains about another.
- Symmetric, Non-negative
- \bullet MI=0, if two random variables are independent
- MI is high, if two random variables are dependent, depending on their entropy.

Mutual Information

- MI over random variables!
- → Pointwise Mutual Information
 - Pointwise MI over selected values of random variables!

$$I(X;Y) = P(XY)lg\frac{P(XY)}{P(X)P(Y)}$$

• How many bits can we spare by storing two elements, rather than each single element alone?

Relative Entropy – KL Divergence

 Average number of bits that are wasted by encoding events from random variable X with a code based on random variable Y. How close are two pmf's?

$$D(y||x) = p(y)lg\frac{p(y)}{p(y|x)}$$

$$D(y||x) = p(y)lg\frac{p(y)}{\frac{p(xy)}{p(x)}} = p(y)lg\frac{p(y)p(x)}{p(xy)}$$

ullet How many bits more would we use by storing $\langle xy \rangle$, rather than each single element alone?

- Representing elements in a vector space:
 - $-x = [2.0, 4.9, 12.4, \dots]$
 - Matrix:
 - * row = elements
 - * column = features
 - Representation in an n-dimensional space
 - Linear Algebra for analysis of vector similarity
 - Vector similarity for clustering, grouping, association

$$\mathscr{X} = \left[egin{array}{cccc} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,d} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,d} \\ \vdots & & & & \\ \mathbf{x}_{k,1} & \mathbf{x}_{k,2} & \cdots & \mathbf{x}_{k,d} \end{array}
ight]$$

- What is mapped on the vector space?
 - Number of individual words in a document: each row one document, each column a word
 - Number of individual words in the context of one word (left and right)
 - Features of words, documents, etc.

• Each vector is a point in n-dimensional space: Example for n

© 2005 by Damir Ćavar

- Given a clustering criterion
 - How to find a partition into n groups that optimizes the criterion?
- Find all possible partitions and calculate their value of the given criterion.
- Choose the partition with the optimal value.

• Complexity:

- Number of possible partitions given n objects into g groups (Liu, 1968):

$$N(n,g) = \frac{1}{g!} \sum_{m=1}^{g} (-1)^{g-m} {g \choose m} m^n$$
 (1)

• Complexity example:

$$N(50,4) = 5.3 \times 10^{28} \tag{2}$$

$$N(100,5) = 6.6 \times 10^{67} \tag{3}$$

- Complexity solution
 - Programming strategies
 - * Dynamic programming
 - * Branch and bound algorithms
- Hill-climbing algorithms
 - Iterative search for optimum value of clustering criteria via rearrangement of existing partitions

- K-means generates
 - -k number of disjoint clusters (non-hierarchical)
 - globular clusters (spherical, elliptical, convex)
- properties:
 - numerical
 - unsupervised (limited!)
 - iterative

K-means

- k clusters
- At least one element per cluster
- No overlapping clusters
- Non-hierarchical
- Every member of a cluster is closer to its cluster than to any other cluster
- Procedure

K-means

- Initial partitioning of data set into k clusters
- For each data point: calculate distance to each cluster
- If one data point is closer to another cluster, relocate it
- Repeat until no further relocations possible

- K-means advantages
 - For large number of variables it is faster than hierarchical algorithms (for small k's)
 - Tighter clusters than hierarchical clustering, if cluster are globular
- K-means disadvantages
 - Initial set of k clusters can affect the result
 - Does not work well with non-globular clusters

• K-means example

Individual	Variable 1	Variable 2	
1	1.0	1.0	
2	1.5	2.0	
3	3.0	4.0	
4	5.0	7.0	
5	3.5	5.0	
6	4.5	5.0	
7	3.5	4.5	

• Initial 2 clusters on the basis of the most distant individuals:

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

- Initial clustering of all remaining individuals:
 - For every other individual:
 - * Calculate Euclidean distance to the centroid of every cluster
 - * Assign individual to cluster
 - * Recalculate centroid for every cluster

• Mean vector or centroid (with coordinates x_1 to x_n) with equal weight coordinates:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{4}$$

• Mean vector or centroid example for $x = \{(3,5), (7,9)\}$, i. e. n = |x| = 2:

$$\bar{x} = \frac{\sum_{i=1}^{2} x_i}{2} = \frac{(3,5) + (7,9)}{2} = \frac{(3+7,5+9)}{2} = (\frac{10}{2}, \frac{14}{2}) = (5,7)$$

• Initial clustering of all remaining individuals:

	Group 1		Group 2	
	Individual	Mean Vector	Individual	Mean Vector
Step 1	1	(1.0, 1.0)	4	(5.0, 7.0)
Step 2	1, 2	(1.3, 1.5)	4	(5.0, 7.0)
Step 3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
Step 4	1, 2, 3	(1.8, 2.3)	4, 5	(4.3, 6.0)
Step 5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
Step 6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

© 2005 by Damir Ćavar

• Initial partitions and clustering criterion:

	Individual	Mean Vector	Sum of SQR error
Group 1	1, 2, 3	(1.8, 2.3)	6.84
Group 2	4, 5, 6, 7	(4.1, 5.4)	5.38
total			12.22

- Error = for every point distance to centroid
 - Criterion: the smaller the sum of square errors, the better the cluster
- Two dimensional Euclidean distance:

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \tag{5}$$

- Error = for every point distance to centroid
- N-dimensional Euclidean distance, with p_i and q_i the coordinates for p and q in dimension i:

$$\sqrt{\sum_{i=1}^{N} (p_1 - q_1)^2} \tag{6}$$

• Optimization Iteration:

- Compare each individual's distance to its own mean with distance to the opposite group mean.
- If distance to the mean in opposite group is smaller, relocate the individual.
- Calculate the sum of square errors, if smaller than before, this is an improvement.

• Distance to means:

Individual	distance to mean 1	distance to mean 2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	0.8
7	2.8	1.1

• Subsequent partitions and new clustering criterion:

	Individual	Mean Vector	Sum of SQR error
Group 1	1, 2	(1.3, 1.5)	0.63
Group 2	3, 4, 5, 6, 7	(3.9, 5.1)	7.9
total			8.53

• Decrease of clustering criterion (from 12.22 to 8.53).

• Remember:

- k-means or k-nearest neighbors is a fast and efficient algorithm.
- You have to know how many clusters you are looking for.
- Specific cluster shapes will not be discovered.

- Expectation Maximization
 - Assume different Gaussian distribution for each cluster
 - Calculate the Expectation of belonging to each Gaussian for each data point
 - Assign each data point to the Gaussian with the highest expectation
 - Recalculate Gaussians given the new data points
 - Repeat until no significant improvement of expectation

$$f(X) = \frac{1}{\sqrt{2\pi \ deviation}} e^{-\frac{(value-mean)^2}{2 \ deviation^2}} \tag{1}$$

Keep in mind...

Schlage die Trommel und fürchte dich nicht, Und küsse die Marketenderin! Das ist die ganze Wissenschaft, Das ist der Bücher tiefster Sinn. (Heinrich Heine, *Doktrin*)

Thanks for your attendance and hope to see you again!

References

[MacKay(2003)] David J. C. MacKay. *Information theory, inference, and learning algorithms*. Cambridge University Press, Cambridge, UK; New York, 2003.

© 2005 by Damir Ćavar