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Frequency Profiles

• Uni-gram frequencies: freq.py, . . .

• Bi-gram frequencies:

• General n-gram models

• Examples: from [MacKay(2003)]
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© 2005 by Damir Ćavar 2
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Frequency Profiles

• What can we do with n-gram frequency profiles?

– Compression, modeling expectations, study of quantitative
language properties, . . .

• What value for n is best for what purpose?
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Language Identification

• N-gram models for Language Identification

• Files: lid.py, lidtrainer.py, *.dat

• Calculations:

– Mean of frequencies
– Deviation
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Numerical Statistics

• Measures of central tendencies of data
– Mean
– Median
– Mode

• Measures of variation/variability
– Spread in data
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Numerical Statistics

• Arithmetic Mean
– Data set:

12175Flo031203.txt
11876Flo031202b.txt
5031Flo031202a.txt

10346Flo031201.txt

10943Flo031204.txt

Count wordsFile
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Numerical Statistics

• Arithmetic Mean

– example:
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Numerical Statistics

• Median
– Middle value of ordered measure values

5031Flo031202a.txt

10943Flo031204.txt

12175Flo031203.txt
11876Flo031202b.txt

10346Flo031201.txt

Count wordsFile
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Numerical Statistics

• Median
– Decrease relevance of outliers:

5031Flo031202a.txt

10943Flo031204.txt

12175Flo031203.txt
11876Flo031202b.txt

10346Flo031201.txt

Count wordsFile
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Numerical Statistics

• Median
– with even number of elements:

– Arithmetic mean of the two middle values:

5031Flo031202a.txt

10943Flo031204.txt

11876Flo031202b.txt

10346Flo031201.txt

Count wordsFile
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Numerical Statistics

• Mean: 10074.2

• Median: 10943

• Mean is reduced on the basis of the outlier:
– Flo031202a.txt  5031

• Median may be a better indicator of central
tendency if outliers/extreme values are present.
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Numerical Statistics

• Mode
– The measure value that occurs most often:

– Mode = 10943

5031Flo031202a.txt

10943Flo031204.txt

12175Flo031203.txt

6329Flo031202b.txt

10943Flo031201.txt

Count wordsFile
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Numerical Statistics

• Approximation of

– Mode
• mean – 3 (mean – median)

– Median
• (2 mean + mode) / 3

– Mean
• (3 median – mode) / 2
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Numerical Statistics

• Notation

– Mean (x bar):

– Mean of a population:

– Sum of values:
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Numerical Statistics

• Notation example:
– Arithmetic mean:

12...nxxxxxnn+++==!
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Numerical Statistics

• Arithmetic mean for grouped data:

– With 100 sample documents what is the arithmetic
mean?

0-499935%

10000-1499925%

15000-1999910%

5000-999930%

Count wordsFiles
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Numerical Statistics

• Arithmetic mean for grouped data:

– f = frequency
– x = midpoint
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Numerical Statistics

• Arithmetic mean for grouped data:

175000

312500

225000

87500
fx

10

25

30

35
Files

0-49992500

10000-1499912500

15000-1999917500

5000-99997500

Count wordsMidpoint
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Numerical Statistics
• Median for grouped data:

– L = lower class limit that contains the interval
– n = total number of measurements
– w = class width
– fmed = frequency of the class containing the median
– •fb = sum of the frequencies for all classes before

the median class
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Numerical Statistics

• Median for grouped data:

10

25

30

35
Files

0-4999

10000-14999

15000-19999

5000-9999

Count words
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Numerical Statistics

• Distribution
– Symmetric distribution
– Skewed curves

• negatively skewed curves
• positively skewed curves
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Numerical Statistics

• Symmetric distribution
– Mean, median and mode are equal.

mean
median
mode
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Numerical Statistics

• Skewed curves
– Negatively skewed distribution: mean < median <

mode
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Numerical Statistics

• Skewed curves
– Positively skewed distribution: mode < median <

mean
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Numerical Statistics

• Variability

390200

10195
0210

400199
20200
380205
200190

200201

Experiment 2Experiment 1
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Numerical Statistics

• Variability
– For both experiments:

• mean: 200
• mode: 200
• median: 200

– Experiment 2 has greater variation.
• Measure of variation:

– Range
– Deviation
– Variance
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Numerical Statistics

• Range
– Difference between largest and smallest value:

• Experiment 1: 210 – 190 = 20
• Experiment 2: 400 – 0 = 400

• Deviation
– Distance of the measurements away from the mean:

• Experiment 1: less
• Experiment 2: more
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Numerical Statistics

• Notation
– s2 = variance of a sample
– 2 = variance of a population
– s = standard deviation of a sample
–  = standard devition of a population
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Numerical Statistics

mean
median
mode

-  +

68% of the
measurements
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Numerical Statistics

mean
median
mode

-2 +2

95% of the
measurements
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Numerical Statistics

mean
median
mode

-3 +3

99.7% of the
measurements



Language Identification

• General n-gram class

• Files: ngram.py

• Task:

– Develop a simple n-gram script on the basis of the n-gram
class for uni-gram, bi-gram, and tri-gram models

– Read in the data from the Brown corpus: a. n-gram model of
the tokens and b. n-gram model of the types
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Collocations

• Words in context

• distribution

• fixed expressions

• collocations

• statistical properties

• function words
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Tests for collocations

• Statistics

• Significance tests
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Significance

• Notations:

• Type I error rate of .05

• Alpha level of .05 or α = .05

• Finding is significant at the .05 level

• Confidence level is 95%

• 95% certainty that a result is not due to chance

• A 1 in 20 chance of obtaining the result

• Are of the region of rejection is .05

• p-value is .05 or p = .05
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Testing

• Statistics as testing of scientific hypotheses

• Strategies:

• Formulating a Research Hypothesis or 
Alternative Hypothesis (Ha)

• Statement of the expectation to be 
tested
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Testing

• Strategies:

• Derivation of a statement that is the 
opposite of the research hypothesis: Null 
Hypothesis (H0)

• Testing the null hypothesis
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Testing

• Statistics as testing of scientific hypotheses

• Strategies:

• If the null hypothesis can be rejected, this is 
evidence in favor of the research 
hypothesis.
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Testing

• Strategies:

• Usually:

• No prove for research hypothesis, just 
support for it.
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Testing

• Research Hypothesis:

• At IU linguistics students perform 
differently in statistics than computer 
science students.

• Ha: μ1 ≠ μ2

• Ha: μ1 - μ2 ≠ 0
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Testing

• Null Hypothesis:

• At IU linguistics students perform the same 
in statistics as computer science students.

• H0: μ1 = μ2

• H0: μ1 - μ2 = 0
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Testing

• More specific: Research Hypothesis:

• At IU linguistics students perform better in 
statistics than computer science students.

• Ha: μ1 > μ2

• Ha: μ1 - μ2 > 0
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Testing

• More specific: Null Hypothesis

• At IU linguistics students perform worse in 
statistics, or equal to computer science 
students.

• H0: μ1 ≤ μ2

• H0: μ1 - μ2 ≤ 0



12

Testing

• Given the distribution of a known area

• e.g. normal distribution

• estimate the probability of obtaining a certain 
value as a result of chance.

• If the probability is low, the likelihood for a 
mere coincidence is low, i.e. a certain theory 
is correct.
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Testing

• Two possible outcomes of test:

• Rejection of null hypothesis

• Acceptance of null hypothesis
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Numerical Statistics

mean
median
mode

-σ +σ

68% of the
measurements
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Numerical Statistics

mean
median
mode

-2σ +2σ

95% of the
measurements
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Numerical Statistics

region of
rejection

-1.65σ

region of
acceptance

one-tailed
test

.05
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Numerical Statistics

region of
rejection

-1.96σ

region of
acceptance

region of
rejection

two-tailed
test

+1.96σ

.025 .025
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Significance Table
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Testing

• Probability as significance level

• Example: Collocations

• Null Hypothesis: independence of two 
words

• P(w1w2) = P(w1) P(w2)
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bowling dancing computer total

male 30 29 16 75

female 12 33 5 50

total 42 62 21 125

chi-square (χ2) test

• Preferred activities over a population sample 
of 125 people:
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chi-square (χ2) test

• Is the choice of activities related to the 
gender?

• If the two variables are independent, we can 
use these probabilities to predict how many 
people should be in each cell.

• If the actual number is different from the 
expectation for independence, the two 
variables must be related.
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chi-square (χ2) test

• Research Hypothesis:

• The variables are dependent.

• Null Hypothesis:

• The variables are independent.
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chi-square (χ2) test

• Overall probability of a person in the sample 
being:

• male: 75/125 = .6

• female: 50/125 = .4
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chi-square (χ2) test

• Overall probability of each preference:

• bowling: 42/125 = .336

• dancing: 62/125 = .496

• computer games: 21/125 = .168
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chi-square (χ2) test

• Independent events: multiplication rule

• The probability of two events occurring is 
the product of their two probabilities.
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chi-square (χ2) test

• Probability of a person in the sample being 
male and preferring bowling:

• P(male & bowling): .6 x .336 = .202

• Expectation: .202 x 125 = 25.2
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bowling dancing computer total
male 30 (25.2) 29 (37.2) 16 (12.6) 75

female 12 (16.8) 33 (24.8) 5 (8.4) 50
total 42 62 21 125

chi-square (χ2) test

• Multiplication of row total with column total 
and division by total number in sample:

• (75 x 42) / 125 = 25.2
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chi-square (χ2) test

• Formula:
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chi-square (χ2) test

• The larger χ2, the more likely the variables 
are related.

• Square effect of cells with large differences.
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chi-square (χ2) test

• Probability distribution of χ2:

• Critical values in table

• Degree-of-freedom:

• df = (number-of-rows - 1) x (number-of-
columns – 1)

• Example: (2 – 1) x (3 – 1) = 2

• Example: 9.097 (< .025; > .01)
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chi-square (χ2) test

• Example: 9.097 (< .025; > .01)

• Significance (at levels: .05, .01)!

• Rejection of Null Hypotheses 
(independence of variables)
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w1=new w1¬new total
w2=companies 8 4667 4675
w2¬companies 15820 14287181 14303001

total 15828 14291848 14307676

chi-square (χ2) test

• Collocations

• new, companies



Statistics

• Maximum Likelihood Estimate

– Frequency oriented
– No inclusion of prior belief: here e. g. assuming a normal dis-

tribution, i. e.
– No inclusion of a prior probability distribution
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Statistics

• Example: Coin tossing

– Observation: 8× head & 2× tail
– Prior probability distribution: 5× head & 5× tail
– Probability mass: 1

2
– How does observation: X = tail change our expectation?
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Statistics

• Example: Coin tossing

– Bayesian answer: update prior belief (= prior probability distri-
bution) in face of evidence and generate posterior probability
estimate
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Bayesian Statistics

• Example:

– Data is added incrementally/sequentially
– Given an a-priori probability distribution
∗ Update our beliefs whith every new datum
∗ Calculate Maximum A Posteriori (MAP) distribution

– MAP probability becomes the new prior probability for the next
datum
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Information Theory

• Surprise effect:

– Coin tossing and observing the results
– What is our prior believe or expectation about an outcome?
– How surprised are we to see a certain outcome?

• Data compression:

– Knowing about the distributional properties of some data
– What is the best compression we can get by mapping it to

bit-representations?
– Is there a formal way to calculate the optimal representation

for data transmission?
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Information Theory

• Entropy:

– Entropy as uncertainty
∗ Tossing a coin = not knowing what the outcome will be.
∗ Probability distribution:
· Fair coin
· Biased coin, unlimited probability distributions
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Information Theory

• Entropy:

– Entropy as uncertainty
∗ Is there a way to calculate the uncertainty and formulate a

function on the basis of a probability distribution?
∗ Let us design such a function:
· H[X] is the measure for X, with X a probability distribution
· H takes X, with X = {P (1), P (2), . . . P (N)} as an argument
· and returns a real number, the value of uncertainty
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Information Theory

• Designing a function for Entropy:

1. Maximum uncertainty in uniform distribution: every possible
outcome is equally likely

� This is the maximum H can return
2. H is a continuous function over the probabilities
� changing the probabilities slightly leads to slight changes of H

© 2005 by Damir Ćavar 8



Information Theory

• Grouping Probabilities:

– X = {P (1) = .5, P (2) = .2, P (3) = (.3)}:
– is equivalent to:
∗ X = {P (1) = .5, P (Y ) = .5}
∗ Y = {P (2) = .4, P (3) = .6}

3. Uncertainty H cannot depend on the grouping of events for a
random variable.
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Information Theory

• Entropy: Formal reformulation of (1–3)

– H(p) is a real valued function of P (1), P (2), . . . P (N), with N the
number of values for the random variable or length of domain,
then

1. H(P (1), P (2), . . . P (N)) reaches a maximum if the distribution
is uniform: P (i) = 1/N, N = len(i), ∀ i.

2. H(P (1), P (2), . . . P (N)) is a continuous function of all P (i)’s.
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Information Theory

• Entropy: Formal reformulation of (1–3)

3. Independence of subsets of probability groups: for N probabil-
ities grouped into k subsets, wk:

w1 =

n1∑
i=1

pi; w2 =

n2∑
i=n1+1

pi; . . .
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Information Theory

• Entropy: Formal reformulation of (1–3)

3. Independence of subsets of probability groups: assumption

H[p] = H[w] +
k∑

j=1

wjH[{pi/wj}j]

– {pi/wj} is: sum extends over pi’s that make up a particular wj
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Information Theory

• Entropy: Summary

– Given the three requirements it follows that:

H[X] = k
∑
x∈X

Pr(x)logPr(x)

– with k and arbitrary constant [8, 40, 44]. For k = −1 and log2

the units are bit.
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Information Theory

• Average Shannon Entropy: measured in bits

H[X] = −1
∑
x∈X

Pr(x)lgPr(x)

H[X] =
∑
x∈X

Pr(x)lg
1

Pr(x)
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Information Theory

• Average Shannon Entropy of one outcome: measured in bits

h[x] = Pr(x)lg
1

Pr(x)
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Joint Entropy

• For a pair of random variables: X, Y ∼ p(x, y)

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)lgp(x, y)

• X = {A = .4, B = .6}

• Y = {C = .2, D = .8}
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Joint Entropy

• X ∧ Y = {AC = .4× .2, AD = .4× .8, BC = .6× .2, BD = .6× .8}

• X ∧ Y = {AC = .08, AD = .32, BC = .12, BD = .48}

• Z = {AC = .08, AD = .32, BC = .12, BD = .48}
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Mutual Information

• Reduction of uncertainty of one random variable due to knowing
about another.

• Amount of information one random variable contains about an-
other.

• Symmetric, Non-negative

• MI = 0, if two random variables are independent

• MI is high, if two random variables are dependent, depending on
their entropy.
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Mutual Information

• MI over random variables!

� Pointwise Mutual Information

– Pointwise MI over selected values of random variables!

I(X; Y ) = P (XY )lg
P (XY )

P (X)P (Y )

• How many bits can we spare by storing two elements, rather
than each single element alone?
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Relative Entropy – KL Divergence

• Average number of bits that are wasted by encoding events from
random variable X with a code based on random variable Y. How
close are two pmf’s?

D(y||x) = p(y)lg
p(y)

p(y|x)

D(y||x) = p(y)lg
p(y)
p(xy)

p(x)

= p(y)lg
p(y)p(x)

p(xy)

• How many bits more would we use by storing < xy >, rather
than each single element alone?
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Vector Space

• Representing elements in a vector space:

– x = [2.0, 4.9, 12.4, . . . ]
– Matrix:
∗ row = elements
∗ column = features

– Representation in an n-dimensional space
– Linear Algebra for analysis of vector similarity
– Vector similarity for clustering, grouping, association
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Vector Space
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Vector Space

• What is mapped on the vector space?

– Number of individual words in a document: each row one
document, each column a word

– Number of individual words in the context of one word (left
and right)

– Features of words, documents, etc.

© 2005 by Damir Ćavar 3



Vector Space

• Each vector is a point in n-dimensional space: Example for n

© 2005 by Damir Ćavar 4



Optimization Clustering

• Given a clustering criterion

– How to find a partition into n groups that optimizes the cri-
terion?

• Find all possible partitions and calculate their value of the given
criterion.

• Choose the partition with the optimal value.
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Optimization Clustering

• Complexity:

– Number of possible partitions given n objects into g groups
(Liu, 1968):

N(n, g) =
1

g!

g∑
m=1

(−1)g−m
( g

m

)
mn (1)
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Optimization Clustering

• Complexity example:

N(50, 4) = 5.3 × 1028 (2)

N(100, 5) = 6.6 × 1067 (3)
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Optimization Clustering

• Complexity solution

– Programming strategies
∗ Dynamic programming
∗ Branch and bound algorithms

• Hill-climbing algorithms

– Iterative search for optimum value of clustering criteria via
rearrangement of existing partitions
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Optimization Clustering

• K-means generates

– k number of disjoint clusters (non-hierarchical)
– globular clusters (spherical, elliptical, convex)

• properties:

– numerical
– unsupervised (limited!)
– iterative
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Optimization Clustering

• K-means

– k clusters
– At least one element per cluster
– No overlapping clusters
– Non-hierarchical
– Every member of a cluster is closer to its cluster than to any

other cluster
– Procedure
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Optimization Clustering

• K-means

– Initial partitioning of data set into k clusters
– For each data point: calculate distance to each cluster
– If one data point is closer to another cluster, relocate it
– Repeat until no further relocations possible
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Optimization Clustering

• K-means advantages

– For large number of variables it is faster than hierarchical al-
gorithms (for small k’s)

– Tighter clusters than hierarchical clustering, if cluster are glob-
ular

• K-means disadvantages

– Initial set of k clusters can affect the result
– Does not work well with non-globular clusters
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Optimization Clustering

• K-means example

Individual Variable 1 Variable 2
1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
4 5.0 7.0
5 3.5 5.0
6 4.5 5.0
7 3.5 4.5
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Optimization Clustering

• Initial 2 clusters on the basis of the most distant individuals:

Individual Mean Vector
Group 1 1 (1.0, 1.0)
Group 2 4 (5.0, 7.0)
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Optimization Clustering

• Initial clustering of all remaining individuals:

– For every other individual:
∗ Calculate Euclidean distance to the centroid of every cluster
∗ Assign individual to cluster
∗ Recalculate centroid for every cluster
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Optimization Clustering

• Mean vector or centroid (with coordinates x1 to xn) with equal
weight coordinates:

x̄ =

∑n
i=1 xi

n
(4)
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Optimization Clustering

• Mean vector or centroid example for x = {(3, 5), (7, 9)}, i. e. n =
|x| = 2:

x̄ =

∑2
i=1 xi

2
=

(3, 5) + (7, 9)

2
=

(3 + 7, 5 + 9)

2
= (

10

2
,
14

2
) = (5, 7)
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Optimization Clustering

• Initial clustering of all remaining individuals:

Group 1 Group 2
Individual Mean Vector Individual Mean Vector

Step 1 1 (1.0, 1.0) 4 (5.0, 7.0)
Step 2 1, 2 (1.3, 1.5) 4 (5.0, 7.0)
Step 3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)
Step 4 1, 2, 3 (1.8, 2.3) 4, 5 (4.3, 6.0)
Step 5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)
Step 6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)
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Optimization Clustering

• Initial partitions and clustering criterion:

Individual Mean Vector Sum of SQR error
Group 1 1, 2, 3 (1.8, 2.3) 6.84
Group 2 4, 5, 6, 7 (4.1, 5.4) 5.38

total 12.22
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Optimization Clustering

• Error = for every point distance to centroid

– Criterion: the smaller the sum of square errors, the better the
cluster

• Two dimensional Euclidean distance:

√
(x1 − x2)2 + (y1 − y2)2 (5)
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Optimization Clustering

• Error = for every point distance to centroid

• N-dimensional Euclidean distance, with pi and qi the coordinates
for p and q in dimension i:

√√√√ N∑
i=1

(p1 − q1)2 (6)
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Optimization Clustering

• Optimization Iteration:

– Compare each individual’s distance to its own mean with dis-
tance to the opposite group mean.

– If distance to the mean in opposite group is smaller, relocate
the individual.

– Calculate the sum of square errors, if smaller than before, this
is an improvement.
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Optimization Clustering

• Distance to means:

Individual distance to mean 1 distance to mean 2
1 1.5 5.4
2 0.4 4.3
3 2.1 1.8
4 5.7 1.8
5 3.2 0.7
6 3.8 0.8
7 2.8 1.1
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Optimization Clustering

• Subsequent partitions and new clustering criterion:

Individual Mean Vector Sum of SQR error
Group 1 1, 2 (1.3, 1.5) 0.63
Group 2 3, 4, 5, 6, 7 (3.9, 5.1) 7.9

total 8.53

• Decrease of clustering criterion (from 12.22 to 8.53).
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Optimization Clustering

• Remember:

– k-means or k-nearest neighbors is a fast and efficient algo-
rithm.

– You have to know how many clusters you are looking for.
– Specific cluster shapes will not be discovered.
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Optimization Clustering

• Expectation Maximization

– Assume different Gaussian distribution for each cluster
– Calculate the Expectation of belonging to each Gaussian for

each data point
– Assign each data point to the Gaussian with the highest ex-

pectation
– Recalculate Gaussians given the new data points
– Repeat until no significant improvement of expectation

f(X) =
1√

2π deviation
e
−(value−mean)2

2 deviation2 (1)
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Keep in mind...

Schlage die Trommel und fürchte dich nicht,
Und küsse die Marketenderin!

Das ist die ganze Wissenschaft,
Das ist der Bücher tiefster Sinn.

(Heinrich Heine, Doktrin)

Thanks for your attendance and hope to see you again!
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