#### Python for Computational Linguistics

Damir Ćavar dcavar@indiana.edu dcavar@unizd.hr

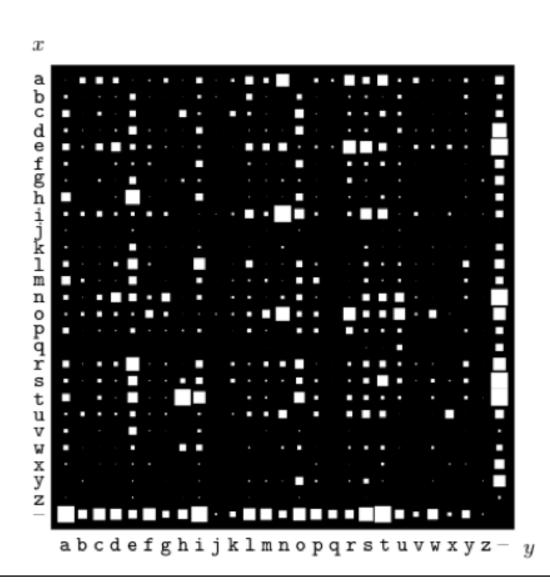
DGfS Herbstschule in Bochum

September 2005

#### **Frequency Profiles**

- *Uni-gram* frequencies: freq.py, . . .
- Bi-gram frequencies:
- General *n*-gram models
- Examples: from [MacKay(2003)]

| i  | $a_i$        | 72 :   |   |   |
|----|--------------|--------|---|---|
|    |              | $p_i$  |   |   |
| 1  | a            | 0.0575 | a |   |
| 2  | b            | 0.0128 | ъ | П |
| 3  | С            | 0.0263 | С | П |
| 4  | d            | 0.0285 | d |   |
| 5  | е            | 0.0913 | е |   |
| 6  | f            | 0.0173 | f | 6 |
| 7  | g            | 0.0133 | g |   |
| 8  | h            | 0.0313 | h |   |
| 9  | i            | 0.0599 | i |   |
| 10 | j            | 0.0006 | j |   |
| 11 | k            | 0.0084 | k | ٠ |
| 12 | 1            | 0.0335 | 1 |   |
| 13 | m            | 0.0235 | m |   |
| 14 | n            | 0.0596 | n |   |
| 15 | 0            | 0.0689 | О |   |
| 16 | p            | 0.0192 | P |   |
| 17 | q            | 0.0008 | q | ٠ |
| 18 | $\mathbf{r}$ | 0.0508 | r |   |
| 19 | s            | 0.0567 | 8 |   |
| 20 | t            | 0.0706 | t |   |
| 21 | u            | 0.0334 | u |   |
| 22 | v            | 0.0069 | v | · |
| 23 | W            | 0.0119 | w |   |
| 24 | x            | 0.0073 | х |   |
| 25 | У            | 0.0164 | У |   |
| 26 | z            | 0.0007 | z | P |
| 27 | _            | 0.1928 | _ | L |



© 2005 by Damir Ćavar

#### **Frequency Profiles**

- What can we do with n-gram frequency profiles?
  - Compression, modeling expectations, study of quantitative language properties, . . .
- What value for *n* is best for what purpose?

© 2005 by Damir Ćavar

#### **Language Identification**

- *N*-gram models for Language Identification
- Files: lid.py, lidtrainer.py, \*.dat
- Calculations:
  - Mean of frequencies
  - Deviation

- Measures of central tendencies of data
  - Mean
  - Median
  - Mode
- Measures of variation/variability
  - Spread in data

- Arithmetic Mean
  - Data set:

| File           | Count words |
|----------------|-------------|
| Flo031201.txt  | 10346       |
| Flo031202a.txt | 5031        |
| Flo031202b.txt | 11876       |
| Flo031203.txt  | 12175       |
| Flo031204.txt  | 10943       |

Arithmetic Mean

$$arithmetic\ mean = \frac{sum\ of\ measures}{number\ of\ measures}$$

– example:

$$\frac{10346 + 5031 + 11876 + 12175 + 10943}{5} = 10074.2$$

#### Median

Middle value of ordered measure values

| File           | Count words |
|----------------|-------------|
| Flo031202a.txt | 5031        |
| Flo031201.txt  | 10346       |
| Flo031204.txt  | 10943       |
| Flo031202b.txt | 11876       |
| Flo031203.txt  | 12175       |

#### Median

– Decrease relevance of outliers:

| File           | Count words |
|----------------|-------------|
| Flo031202a.txt | 5031        |
| Flo031201.txt  | 10346       |
| Flo031204.txt  | 10943       |
| Flo031202b.txt | 11876       |
| Flo031203.txt  | 12175       |

- Median
  - with even number of elements:

| File           | Count words |
|----------------|-------------|
| Flo031202a.txt | 5031        |
| Flo031201.txt  | 10346       |
| Flo031204.txt  | 10943       |
| Flo031202b.txt | 11876       |

– Arithmetic mean of the two middle values:

$$\frac{10346 + 10943}{2} = 10644.5$$

Mean: 10074.2

Median: 10943

- Mean is reduced on the basis of the outlier:
  - Flo031202a.txt 5031
- Median may be a better indicator of central tendency if outliers/extreme values are present.

#### Mode

– The measure value that occurs most often:

| File           | Count words |
|----------------|-------------|
| Flo031202a.txt | 5031        |
| Flo031201.txt  | 10943       |
| Flo031204.txt  | 10943       |
| Flo031202b.txt | 6329        |
| Flo031203.txt  | 12175       |

- Mode = 10943

- Approximation of
  - Mode
    - mean 3 (mean median)
  - Median
    - (2 mean + mode) / 3
  - Mean
    - (3 median mode) / 2

Notation

- Mean (x bar):  $\bar{x}$
- Mean of a population:  $\mu$
- Sum of values: ∑

- Notation example:
  - Arithmetic mean:

$$\overline{x} = \frac{\sum x}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Arithmetic mean for grouped data:

| Files | Count words |
|-------|-------------|
| 35%   | 0-4999      |
| 30%   | 5000-9999   |
| 25%   | 10000-14999 |
| 10%   | 15000-19999 |

– With 100 sample documents what is the arithmetic mean?

Arithmetic mean for grouped data:

$$\overline{x} = \frac{\sum fx}{n}$$

- f = frequency
- x = midpoint

#### Arithmetic mean for grouped data:

| Files | Midpoint | fx     | Count words |
|-------|----------|--------|-------------|
| 35    | 2500     | 87500  | 0-4999      |
| 30    | 7500     | 225000 | 5000-9999   |
| 25    | 12500    | 312500 | 10000-14999 |
| 10    | 17500    | 175000 | 15000-19999 |

$$\overline{x} = \frac{\sum fx}{n} = \frac{87500 + 225000 + 312500 + 175000}{100} = \frac{800000}{100} = 8000$$

Median for grouped data:

$$median = L + \frac{w}{f_{med}} (.5n - \sum f_b)$$

- -L = lower class limit that contains the interval
- -n = total number of measurements
- w = class width
- $-f_{med}$  = frequency of the class containing the median

Median for grouped data:

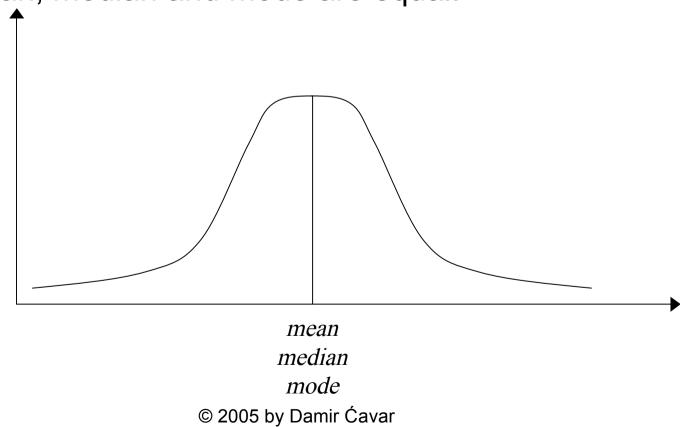
| Files | Count words |
|-------|-------------|
| 35    | 0-4999      |
| 30    | 5000-9999   |
| 25    | 10000-14999 |
| 10    | 15000-19999 |

$$median = 5000 + \frac{4999}{30} (50 - 35) = 7499.5$$

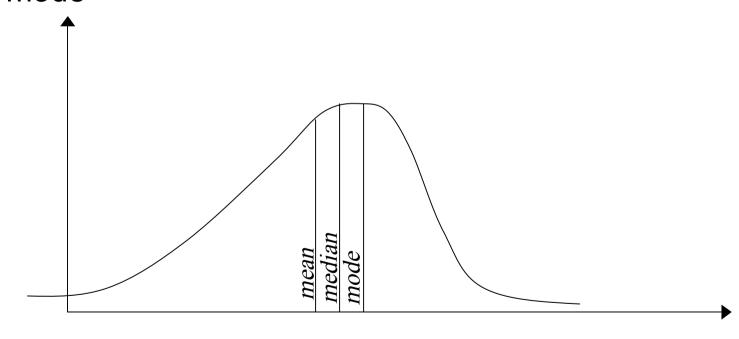
- Distribution
  - Symmetric distribution
  - Skewed curves
    - negatively skewed curves
    - positively skewed curves

Symmetric distribution

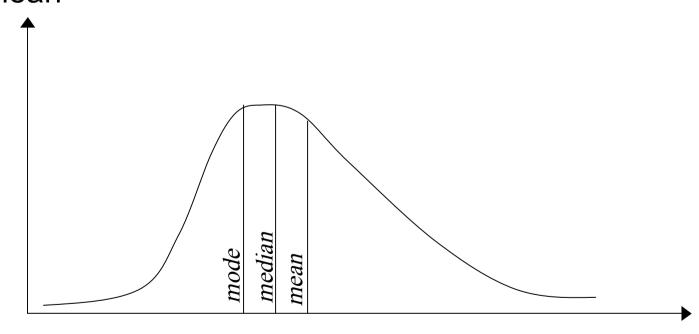
Mean, median and mode are equal.



- Skewed curves
  - Negatively skewed distribution: mean < median < mode</li>



- Skewed curves
  - Positively skewed distribution: mode < median < mean</li>



#### Variability

| Experiment 1 | Experiment 2 |
|--------------|--------------|
| 195          | 10           |
| 210          | 0            |
| 199          | 400          |
| 200          | 20           |
| 205          | 380          |
| 190          | 200          |
| 200          | 390          |
| 201          | 200          |

- Variability
  - For both experiments:

• mean: 200

• mode: 200

• median: 200

- Experiment 2 has greater variation.
- Measure of variation:
  - Range
  - Deviation
  - Variance

#### Range

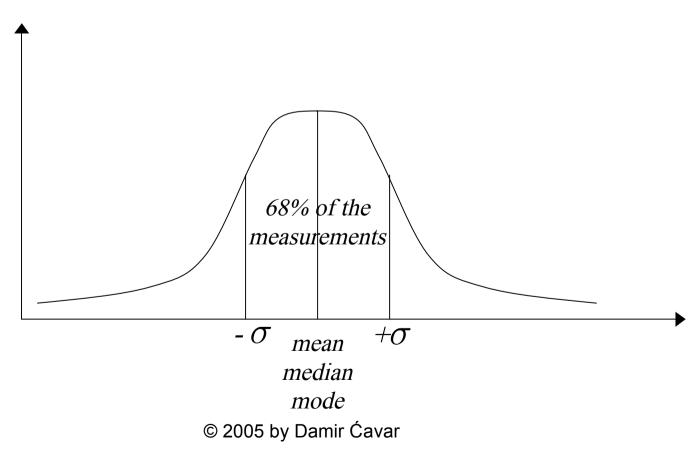
- Difference between largest and smallest value:
  - Experiment 1: 210 190 = 20
  - Experiment 2: 400 0 = 400

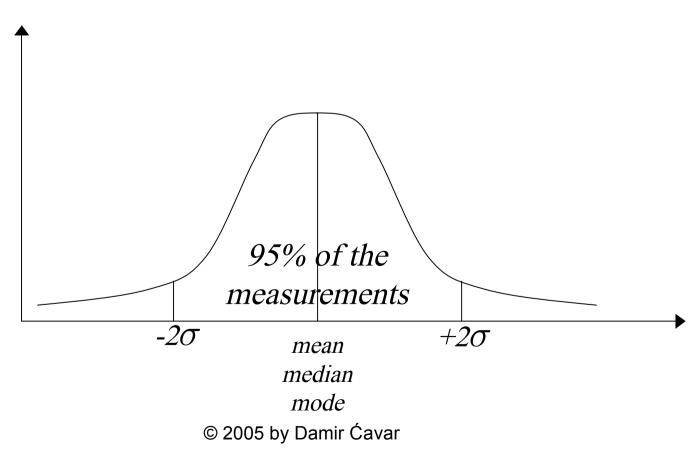
#### Deviation

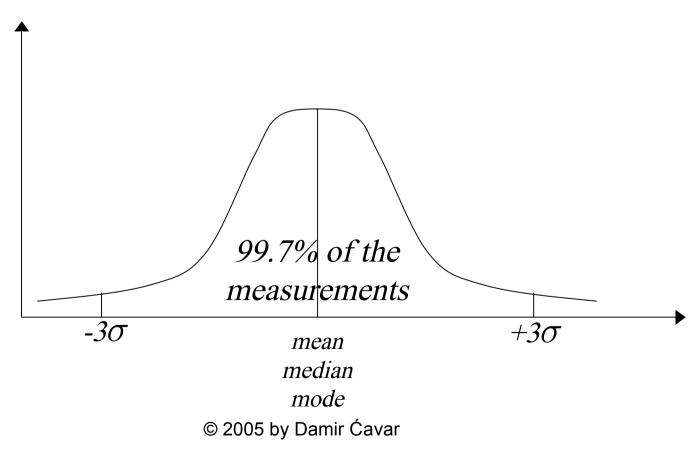
- Distance of the measurements away from the mean:
  - Experiment 1: less
  - Experiment 2: more

#### Notation

- $s^2$  = variance of a sample
- $-\sigma^2$  = variance of a population
- s = standard deviation of a sample
- $-\sigma$  = standard devition of a population







#### Language Identification

- General *n*-gram class
- Files: ngram.py
- Task:
  - Develop a simple n-gram script on the basis of the n-gram class for uni-gram, bi-gram, and tri-gram models
  - Read in the data from the Brown corpus: a. n-gram model of the tokens and b. n-gram model of the types

# Collocations

- Words in context
  - distribution
  - fixed expressions
  - collocations
    - statistical properties
    - function words

# Tests for collocations

- Statistics
- Significance tests

## Significance

- Notations:
  - Type I error rate of .05
  - Alpha level of .05 or  $\alpha = .05$
  - Finding is significant at the .05 level
  - Confidence level is 95%
  - 95% certainty that a result is not due to chance
  - A I in 20 chance of obtaining the result

- Statistics as testing of scientific hypotheses
- Strategies:
  - Formulating a Research Hypothesis or Alternative Hypothesis (Ha)
    - Statement of the expectation to be tested

- Strategies:
  - Derivation of a statement that is the opposite of the research hypothesis: Null Hypothesis (H0)
    - Testing the null hypothesis

- Statistics as testing of scientific hypotheses
- Strategies:
  - If the null hypothesis can be rejected, this is evidence in favor of the research hypothesis.

- Strategies:
  - Usually:
    - No prove for research hypothesis, just support for it.

- Research Hypothesis:
  - At IU linguistics students perform differently in statistics than computer science students.
    - $H_a: \mu_1 \neq \mu_2$
    - $H_a: \mu_1 \mu_2 \neq 0$

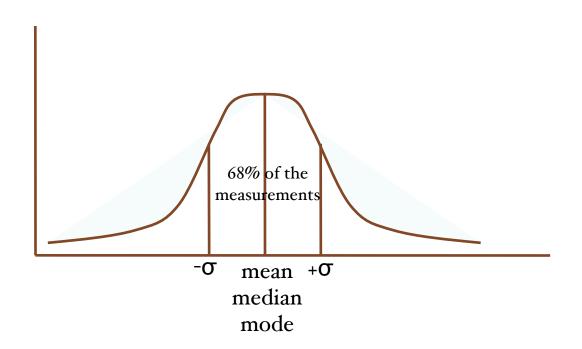
- Null Hypothesis:
  - At IU linguistics students perform the same in statistics as computer science students.
    - $H_0$ :  $\mu_1 = \mu_2$
    - $H_0$ :  $\mu_1$   $\mu_2$  = 0

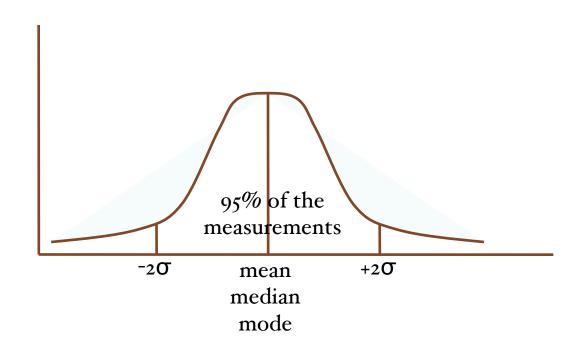
- More specific: Research Hypothesis:
  - At IU linguistics students perform better in statistics than computer science students.
    - $H_a: \mu_1 > \mu_2$
    - $H_a$ :  $\mu_1 \mu_2 > 0$

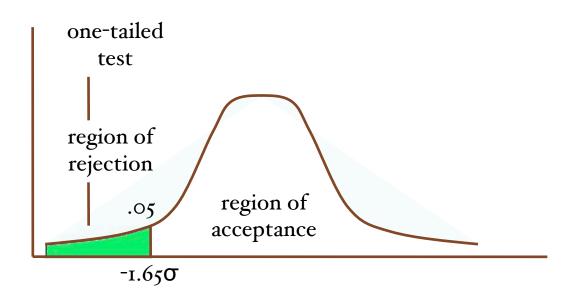
- More specific: Null Hypothesis
  - At IU linguistics students perform worse in statistics, or equal to computer science students.
    - $H_0: \mu_1 \le \mu_2$
    - $H_0: \mu_1 \mu_2 \le 0$

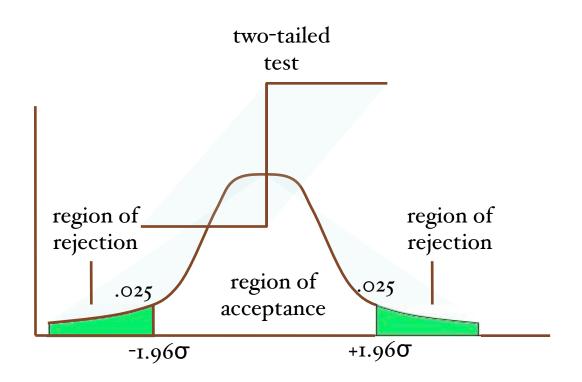
- Given the distribution of a known area
  - e.g. normal distribution
- estimate the probability of obtaining a certain value as a result of chance.
- If the probability is low, the likelihood for a mere coincidence is low, i.e. a certain theory is correct.

- Two possible outcomes of test:
  - Rejection of null hypothesis
  - Acceptance of null hypothesis









## Significance Table

|     | Ρ   | 0.99    | 0.95   | 0.10  | 0.05  | 0.01  | 0.005 | 0.001 |
|-----|-----|---------|--------|-------|-------|-------|-------|-------|
| d.f | . 1 | 0.00016 | 0.0039 | 2.71  | 3.84  | 6.63  | 7.88  | 10.83 |
| 1   | 2   | 0.020   | 0.10   | 4.60  | 5.99  | 9.21  | 10.60 | 13.82 |
| 1   | 3   | 0.115   | 0.35   | 6.25  | 7.81  | 11.34 | 12.84 | 16.27 |
| 1   | 4   | 0.297   | 0.71   | 7.78  | 9.49  | 13.28 | 14.86 | 18.47 |
| L   | 100 | 70.06   | 77.93  | 118.5 | 124.3 | 135.8 | 140.2 | 149.4 |

- Probability as significance level
- Example: Collocations
  - Null Hypothesis: independence of two words
  - $P(w_1w_2) = P(w_1) P(w_2)$

 Preferred activities over a population sample of 125 people:

|        | bowling | dancing | computer | total |
|--------|---------|---------|----------|-------|
| male   | 30      | 29      | 16       | 75    |
| female | 12      | 33      | 5        | 50    |
| total  | 42      | 62      | 21       | 125   |

- Is the choice of activities related to the gender?
  - If the two variables are independent, we can use these probabilities to predict how many people should be in each cell.
  - If the actual number is different from the expectation for independence, the two variables must be related.

- Research Hypothesis:
  - The variables are dependent.
- Null Hypothesis:
  - The variables are independent.

- Overall probability of a person in the sample being:
  - male: 75/125 = .6
  - female: 50/125 = .4

- Overall probability of each preference:
  - bowling: 42/125 = .336
  - dancing: 62/125 = .496
  - computer games: 21/125 = .168

- Independent events: multiplication rule
  - The probability of two events occurring is the product of their two probabilities.

- Probability of a person in the sample being male and preferring bowling:
  - P(male & bowling):  $.6 \times .336 = .202$
  - Expectation:  $.202 \times 125 = 25.2$

- Multiplication of row total with column total and division by total number in sample:
- $(75 \times 42) / 125 = 25.2$

|        | bowling   | dancing   | computer  | total |
|--------|-----------|-----------|-----------|-------|
| male   | 30 (25.2) | 29 (37.2) | 16 (12.6) | 75    |
| female | 12 (16.8) | 33 (24.8) | 5 (8.4)   | 50    |
| total  | 42        | 62        | 21        | 125   |

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$
 • Formula:

$$\chi^2 = \frac{(30 - 25.2)^2}{25.2} + \frac{(29 - 37.2)^2}{37.2} + \frac{(16 - 12.6)^2}{12.6} + \frac{(12 - 16.8)^2}{16.8} + \frac{(33 - 24.8)^2}{24.8} + \frac{(5 - 8.4)^2}{8.4} = 9.097$$

- The larger  $\chi^2$ , the more likely the variables are related.
- Square effect of cells with large differences.

- Probability distribution of  $\chi^2$ :
  - Critical values in table
  - Degree-of-freedom:
    - df = (number-of-rows I) x (number-of-columns I)
    - Example:  $(2 1) \times (3 1) = 2$
  - Example: 9.097 (< .025; > .01)

- Example: 9.097 (< .025; > .01)
  - Significance (at levels: .05, .01)!
  - Rejection of Null Hypotheses (independence of variables)

- Collocations
  - new, companies

|              | wi=new | wi¬new   | total    |
|--------------|--------|----------|----------|
| w2=companies | 8      | 4667     | 4675     |
| w2¬companies | 15820  | 14287181 | 14303001 |
| total        | 15828  | 14291848 | 14307676 |

#### **Statistics**

- Maximum Likelihood Estimate
  - Frequency oriented
  - No inclusion of prior belief: here e.g. assuming a normal distribution, i.e.
  - No inclusion of a prior probability distribution

#### **Statistics**

- Example: Coin tossing
  - Observation:  $8 \times head \& 2 \times tail$
  - Prior probability distribution:  $5 \times head \& 5 \times tail$
  - Probability mass:  $\frac{1}{2}$
  - How does observation: X = tail change our expectation?

© 2005 by Damir Ćavar

#### **Statistics**

- Example: Coin tossing
  - Bayesian answer: update prior belief (= prior probability distribution) in face of evidence and generate posterior probability estimate

© 2005 by Damir Ćavar

#### **Bayesian Statistics**

#### • Example:

- Data is added incrementally/sequentially
- Given an a-priori probability distribution
  - \* Update our beliefs whith every new datum
  - \* Calculate Maximum A Posteriori (MAP) distribution
- MAP probability becomes the new prior probability for the next datum

#### **Information Theory**

#### Surprise effect:

- Coin tossing and observing the results
- What is our prior believe or expectation about an outcome?
- How surprised are we to see a certain outcome?

#### • Data compression:

- Knowing about the distributional properties of some data
- What is the best compression we can get by mapping it to bit-representations?
- Is there a formal way to calculate the optimal representation for data transmission?

#### **Information Theory**

#### • Entropy:

- Entropy as uncertainty
  - \* Tossing a coin = not knowing what the outcome will be.
  - \* Probability distribution:
    - · Fair coin
    - · Biased coin, unlimited probability distributions

#### • Entropy:

- Entropy as uncertainty
  - \* Is there a way to calculate the uncertainty and formulate a function on the basis of a probability distribution?
  - \* Let us design such a function:
    - $\cdot$  H[X] is the measure for X, with X a probability distribution
    - $\cdot$  H takes X, with  $X = \{P(1), P(2), \dots P(N)\}$  as an argument
    - · and returns a real number, the value of uncertainty

- Designing a function for Entropy:
  - 1. Maximum uncertainty in uniform distribution: every possible outcome is equally likely
  - $\rightarrow$  This is the maximum H can return
  - 2. H is a continuous function over the probabilities
  - ightarrow changing the probabilities slightly leads to slight changes of H

Grouping Probabilities:

$$-X = \{P(1) = .5, P(2) = .2, P(3) = (.3)\}:$$

– is equivalent to:

$$* X = {P(1) = .5, P(Y) = .5}$$

\* 
$$Y = \{P(2) = .4, P(3) = .6\}$$

3. Uncertainty H cannot depend on the grouping of events for a random variable.

- Entropy: Formal reformulation of (1-3)
  - H(p) is a real valued function of  $P(1), P(2), \dots P(N)$ , with N the number of values for the random variable or length of *domain*, then
  - 1.  $H(P(1), P(2), \dots P(N))$  reaches a maximum if the distribution is uniform:  $P(i) = 1/N, N = len(i), \forall i$ .
  - 2.  $H(P(1), P(2), \dots P(N))$  is a continuous function of all P(i)'s.

© 2005 by Damir Ćavar

- Entropy: Formal reformulation of (1–3)
  - 3. Independence of subsets of probability groups: for N probabilities grouped into k subsets,  $w_k$ :

$$w_1 = \sum_{i=1}^{n_1} p_i; w_2 = \sum_{i=n_1+1}^{n_2} p_i; \dots$$

- Entropy: Formal reformulation of (1–3)
  - 3. Independence of subsets of probability groups: assumption

$$H[p] = H[w] + \sum_{j=1}^{k} w_j H[\{p_i/w_j\}_j]$$

 $-\{p_i/w_j\}$  is: sum extends over  $p_i$ 's that make up a particular  $w_j$ 

- Entropy: Summary
  - Given the three requirements it follows that:

$$H[X] = k \sum_{x \in X} Pr(x) log Pr(x)$$

— with k and arbitrary constant [8,40,44]. For k=-1 and  $log_2$  the units are bit.

• Average Shannon Entropy: measured in bits

$$H[X] = -1\sum_{x \in X} Pr(x) lg Pr(x)$$

$$H[X] = \sum_{x \in X} Pr(x) lg \frac{1}{Pr(x)}$$

• Average Shannon Entropy of one outcome: measured in bits

$$h[x] = Pr(x)lg\frac{1}{Pr(x)}$$

#### **Joint Entropy**

• For a pair of random variables:  $X, Y \sim p(x, y)$ 

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) lgp(x,y)$$

- $X = \{A = .4, B = .6\}$
- $Y = \{C = .2, D = .8\}$

#### **Joint Entropy**

• 
$$X \wedge Y = \{AC = .4 \times .2, AD = .4 \times .8, BC = .6 \times .2, BD = .6 \times .8\}$$

• 
$$X \wedge Y = \{AC = .08, AD = .32, BC = .12, BD = .48\}$$

• 
$$Z = \{AC = .08, AD = .32, BC = .12, BD = .48\}$$

© 2005 by Damir Ćavar

#### **Mutual Information**

- Reduction of uncertainty of one random variable due to knowing about another.
- Amount of information one random variable contains about another.
- Symmetric, Non-negative
- $\bullet$  MI=0, if two random variables are independent
- MI is high, if two random variables are dependent, depending on their entropy.

#### **Mutual Information**

- MI over random variables!
- → Pointwise Mutual Information
  - Pointwise MI over selected values of random variables!

$$I(X;Y) = P(XY)lg\frac{P(XY)}{P(X)P(Y)}$$

• How many bits can we spare by storing two elements, rather than each single element alone?

#### Relative Entropy – KL Divergence

 Average number of bits that are wasted by encoding events from random variable X with a code based on random variable Y. How close are two pmf's?

$$D(y||x) = p(y)lg\frac{p(y)}{p(y|x)}$$

$$D(y||x) = p(y)lg\frac{p(y)}{\frac{p(xy)}{p(x)}} = p(y)lg\frac{p(y)p(x)}{p(xy)}$$

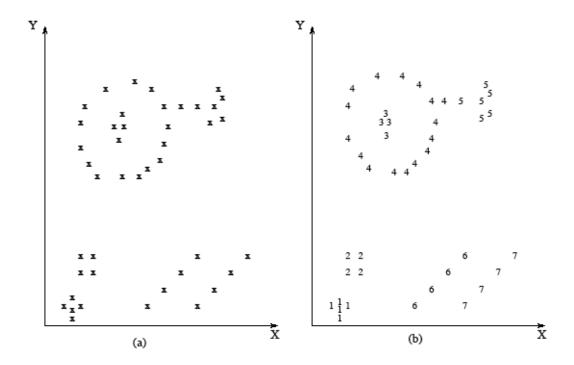
ullet How many bits more would we use by storing  $\langle xy \rangle$ , rather than each single element alone?

- Representing elements in a vector space:
  - $-x = [2.0, 4.9, 12.4, \dots]$
  - Matrix:
    - \* row = elements
    - \* column = features
  - Representation in an n-dimensional space
  - Linear Algebra for analysis of vector similarity
  - Vector similarity for clustering, grouping, association

$$\mathscr{X} = \left[ egin{array}{cccc} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,d} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,d} \\ \vdots & & & & \\ \mathbf{x}_{k,1} & \mathbf{x}_{k,2} & \cdots & \mathbf{x}_{k,d} \end{array} 
ight]$$

- What is mapped on the vector space?
  - Number of individual words in a document: each row one document, each column a word
  - Number of individual words in the context of one word (left and right)
  - Features of words, documents, etc.

• Each vector is a point in n-dimensional space: Example for n



© 2005 by Damir Ćavar

- Given a clustering criterion
  - How to find a partition into n groups that optimizes the criterion?
- Find all possible partitions and calculate their value of the given criterion.
- Choose the partition with the optimal value.

#### • Complexity:

- Number of possible partitions given n objects into g groups (Liu, 1968):

$$N(n,g) = \frac{1}{g!} \sum_{m=1}^{g} (-1)^{g-m} {g \choose m} m^n$$
 (1)

• Complexity example:

$$N(50,4) = 5.3 \times 10^{28} \tag{2}$$

$$N(100,5) = 6.6 \times 10^{67} \tag{3}$$

- Complexity solution
  - Programming strategies
    - \* Dynamic programming
    - \* Branch and bound algorithms
- Hill-climbing algorithms
  - Iterative search for optimum value of clustering criteria via rearrangement of existing partitions

- K-means generates
  - -k number of disjoint clusters (non-hierarchical)
  - globular clusters (spherical, elliptical, convex)
- properties:
  - numerical
  - unsupervised (limited!)
  - iterative

#### K-means

- k clusters
- At least one element per cluster
- No overlapping clusters
- Non-hierarchical
- Every member of a cluster is closer to its cluster than to any other cluster
- Procedure

#### K-means

- Initial partitioning of data set into k clusters
- For each data point: calculate distance to each cluster
- If one data point is closer to another cluster, relocate it
- Repeat until no further relocations possible

- K-means advantages
  - For large number of variables it is faster than hierarchical algorithms (for small k's)
  - Tighter clusters than hierarchical clustering, if cluster are globular
- K-means disadvantages
  - Initial set of k clusters can affect the result
  - Does not work well with non-globular clusters

#### • K-means example

| Individual | Variable 1 | Variable 2 |  |
|------------|------------|------------|--|
| 1          | 1.0        | 1.0        |  |
| 2          | 1.5        | 2.0        |  |
| 3          | 3.0        | 4.0        |  |
| 4          | 5.0        | 7.0        |  |
| 5          | 3.5        | 5.0        |  |
| 6          | 4.5        | 5.0        |  |
| 7          | 3.5        | 4.5        |  |

• Initial 2 clusters on the basis of the most distant individuals:

|         | Individual | Mean Vector |
|---------|------------|-------------|
| Group 1 | 1          | (1.0, 1.0)  |
| Group 2 | 4          | (5.0, 7.0)  |

- Initial clustering of all remaining individuals:
  - For every other individual:
    - \* Calculate Euclidean distance to the centroid of every cluster
    - \* Assign individual to cluster
    - \* Recalculate centroid for every cluster

• Mean vector or centroid (with coordinates  $x_1$  to  $x_n$ ) with equal weight coordinates:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{4}$$

• Mean vector or centroid example for  $x = \{(3,5), (7,9)\}$ , i. e. n = |x| = 2:

$$\bar{x} = \frac{\sum_{i=1}^{2} x_i}{2} = \frac{(3,5) + (7,9)}{2} = \frac{(3+7,5+9)}{2} = (\frac{10}{2}, \frac{14}{2}) = (5,7)$$

• Initial clustering of all remaining individuals:

|        | Group 1    |             | Group 2    |             |
|--------|------------|-------------|------------|-------------|
|        | Individual | Mean Vector | Individual | Mean Vector |
| Step 1 | 1          | (1.0, 1.0)  | 4          | (5.0, 7.0)  |
| Step 2 | 1, 2       | (1.3, 1.5)  | 4          | (5.0, 7.0)  |
| Step 3 | 1, 2, 3    | (1.8, 2.3)  | 4          | (5.0, 7.0)  |
| Step 4 | 1, 2, 3    | (1.8, 2.3)  | 4, 5       | (4.3, 6.0)  |
| Step 5 | 1, 2, 3    | (1.8, 2.3)  | 4, 5, 6    | (4.3, 5.7)  |
| Step 6 | 1, 2, 3    | (1.8, 2.3)  | 4, 5, 6, 7 | (4.1, 5.4)  |

© 2005 by Damir Ćavar

• Initial partitions and clustering criterion:

|         | Individual | Mean Vector | Sum of SQR error |
|---------|------------|-------------|------------------|
| Group 1 | 1, 2, 3    | (1.8, 2.3)  | 6.84             |
| Group 2 | 4, 5, 6, 7 | (4.1, 5.4)  | 5.38             |
| total   |            |             | 12.22            |

- Error = for every point distance to centroid
  - Criterion: the smaller the sum of square errors, the better the cluster
- Two dimensional Euclidean distance:

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \tag{5}$$

- Error = for every point distance to centroid
- N-dimensional Euclidean distance, with  $p_i$  and  $q_i$  the coordinates for p and q in dimension i:

$$\sqrt{\sum_{i=1}^{N} (p_1 - q_1)^2} \tag{6}$$

#### • Optimization Iteration:

- Compare each individual's distance to its own mean with distance to the opposite group mean.
- If distance to the mean in opposite group is smaller, relocate the individual.
- Calculate the sum of square errors, if smaller than before, this is an improvement.

#### • Distance to means:

| Individual | distance to mean 1 | distance to mean 2 |
|------------|--------------------|--------------------|
| 1          | 1.5                | 5.4                |
| 2          | 0.4                | 4.3                |
| 3          | 2.1                | 1.8                |
| 4          | 5.7                | 1.8                |
| 5          | 3.2                | 0.7                |
| 6          | 3.8                | 0.8                |
| 7          | 2.8                | 1.1                |

• Subsequent partitions and new clustering criterion:

|         | Individual    | Mean Vector | Sum of SQR error |
|---------|---------------|-------------|------------------|
| Group 1 | 1, 2          | (1.3, 1.5)  | 0.63             |
| Group 2 | 3, 4, 5, 6, 7 | (3.9, 5.1)  | 7.9              |
| total   |               |             | 8.53             |

• Decrease of clustering criterion (from 12.22 to 8.53).

#### • Remember:

- k-means or k-nearest neighbors is a fast and efficient algorithm.
- You have to know how many clusters you are looking for.
- Specific cluster shapes will not be discovered.

- Expectation Maximization
  - Assume different Gaussian distribution for each cluster
  - Calculate the Expectation of belonging to each Gaussian for each data point
  - Assign each data point to the Gaussian with the highest expectation
  - Recalculate Gaussians given the new data points
  - Repeat until no significant improvement of expectation

$$f(X) = \frac{1}{\sqrt{2\pi \ deviation}} e^{-\frac{(value-mean)^2}{2 \ deviation^2}} \tag{1}$$

#### Keep in mind...

Schlage die Trommel und fürchte dich nicht, Und küsse die Marketenderin! Das ist die ganze Wissenschaft, Das ist der Bücher tiefster Sinn. (Heinrich Heine, *Doktrin*)

Thanks for your attendance and hope to see you again!

#### References

[MacKay(2003)] David J. C. MacKay. *Information theory, inference, and learning algorithms*. Cambridge University Press, Cambridge, UK; New York, 2003.

© 2005 by Damir Ćavar